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We study a large class F of models of the quantum statistical mechanics dealing
with two types of particles. First the spinless electrons are quantum particles
obeying to the Fermi statistics, they can hop. Secondly the ions which cannot
move, are classical particles. The Falicov–Kimball (FK) model (1) is a well
known model belonging to F, for which the existence of an antiferomagnetic
phase transition was proven in the seminal paper of Kennedy and Lieb. (2) This
result was extended by Lebowitz and Macris. (3) A new approach to this problem
based on quantum selection of the ground states was proposed in ref. 4. In this
paper we extend this approach to show that, under the ‘‘strong insulating con-
dition,’’ any hamiltonian of the class F admits, at every temperature, an effective
hamiltonian, which governs the behaviour of the ions interacting through forces
mediated by the electrons. The effective hamiltonians are long range many body
Ising hamiltonians, which can be computed by a cluster expansion expressed in
term of the quantum fluctuations. Our main result is that we can apply the
powerfull results of the classical statistical mechanics to our quantum models. In
particular we can use the classical Pirogov–Sinai theory to establish a hierarchy
of phase diagrams, we can also study of the behaviour of the quantum inter-
faces, (29) and so on ...

KEY WORDS: Itinerant electrons; phase transitions; Pirogov–Sinai theory;
commensurate phases.

0. INTRODUCTION AND RESULTS

One major problem of the quantum statistical mechanics is that, in general,
the hamiltonians cannot be diagonalized. Usually the hamiltonian splits
into a classical part (more generally a diagonal part w.r.t. a basis) and a



quantum part (off diagonal part). We can distinguish, at least, three typical
cases.

Case I. The classical hamiltonian has a finite number of ground
states and the contours separating the ground states satisfy the Peierls
condition. Then, when the quantum part of the hamiltonian is small, the
phase transitions are generally driven by the classical part. One typical
example is the existence of a spontaneous magnetization for any anisotro-
pic Heisenberg model in dimension larger than 1. (37) Then we will speak of
classical phase transition.

Case II. The classical hamiltonian has either an infinity of ground
states or even a finite number, but the Peierls condition is not satisfied. This
is of course one very interesting situation. In many cases the quantum fluc-
tuations will select a finite set of classical ground states, which will generate
the coexisting phases at low temperature. This is the case of the Falicov–
Kimball model as shown by Kennedy and Lieb in ref. 2. We notice that in
this case the ground states of the full hamiltonian are not infinitely dege-
nerated. Then we speak of quantum phase transition.

Case III. The classical hamiltonian has an infinity of ground states,
and the full hamiltonian has also an infinity of ground states. In some cases
the thermal fluctuations will select a finite set of classical ground states,
which will generate the phases coexisting at low temperature. Such an
example is the 111 interface of the anisotropic Heisenberg model. (38) Then
we will also speak of quantum phase transition.

The aim of this paper is to study a large class F of quantum lattice
models containing the Falicov–Kimball model, which modelize the spinless
fermion, which are quantum particles, interacting with ions, which are
classical particles. More precisely, the electrons can hop from one site to
every arbitrary site of the lattice, we even permit fermionic interactions.
Our main idea stems from an analogy with the classical statistical mecha-
nics. The A.N.N.I. models has, for specific values of the coupling con-
stants, an infinity of ground states. The dominant ground states are the
ground states with the largest thermal fluctuations. If they are in finite
number, they can give rise to the coexisting phases at low temperature. This
was understood by Fisher and Selke, (6) and became a rigorous theory in the
papers of Dinaburg, Mazel, and Sinai. (7, 8)

A similar idea was used in ref. 4 for the Falicov–Kimball model: the
quantum fluctuations select, at low temperature, the ‘‘dominant quantum
ground states,’’ which are the classical ground states with the largest
quantum fluctuations. In the case of small chemical potentials (in our
notations), the Falicov–Kimball model has two dominant quantum ground
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states, which give rise to the two coexisting phases at low temperature. We
recover the results of refs. 2 and 3. This idea will be extended to the class F.

0.1. The Hamiltonians of the Class F on the Lattice Zn

HV=H
f
V+H

c
V

HfV= C
{A, B ¥PV ×PV}

t{A, B} C
{x ¥ V}

C*A+xCB+x

HcV= C
{X ]”, Y ]” ¥PV}

J{X, Y} C
{y ¥ V}

sX+yyY+y

+
Û
2

C
x ¥ V

s(x) y(x)−
m i

2
C
x ¥ V

s(x)−
me

2
C
x ¥ V

y(x) (0.1)

• PV is the set of subsets of V … Zn.

• C*a, Ca are the fermionic creation and annihilation operators acting
on the usual Fock space. (10)

• ya=2C*aCa−1.

• sx is 1 if there is an ion at the site x and −1 otherwise.

CA= D
{a ¥ A}

Ca; sX= D
{x ¥X}

sx; yY= D
{y ¥ Y}

yy

• We suppose that A 5 B=”, and that |A|=|B|. (|A| is the cardi-
nality of A). The coupling constants t{A, B} and J{X, Y} are real numbers,
which are translation invariant, they satisfy the following conditions:

A!× |t[A, B] | [ exp−D.T[A, B]

|J{X, Y} | [ exp−DŒ.T[X, Y]
(0.2)

D and DŒ are positive constants. We consider the set of trees, which can be
built from the set [A, B], we define T[A, B] to be the length of the tree of
minimal length. The factorial A! is the cardinality of the different pairings
between the creation and annihilation operators of the fermionic potential.
ta, b is called the hopping intensity, t[A, B] is the hopping interaction. We will
use the short term ‘‘hopping’’ for both. me and mi are the chemical poten-
tials of the electrons and resp. of the ions. We single out from the hamil-
tonian Hc the ‘‘on site energy’’ Û, which will play a major role. In the
general case, Û has an arbitrary sign, then we use the transformation
s(x)Q −s(x) at the sites for which Û < 0 to go to the repulsive case Û > 0
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at every lattice site, that we will consider now. H int is the hamiltonian con-
taining the non on site potentials of HC. The well known Falicov–Kimball
hamiltonian belongs to the class F. In this case the electrons jump only on
their nearest neighbors, more other there is no fermionic potential.

HFK
V =t C

Oa, bP ¥ V
{C*aCb+C*bCa}+

U
2

C
x ¥ V

s(x) y(x)−
m i

2
C
x ¥ V

s(x)−
me

2
C
x ¥ V

y(x)
(0.3)

0.1.1. Definitions

• SV is the set of ion’s configurations SV defined in V.

• F
f
V is the set of ‘‘frozen electron’s’’ configurations in V (non

moving).

• The local algebra O is the tensor product of the local algebra built
from the fermionic operators and from the commutative local algebra S

built from the s(x), (10) a typical element will be written O ¥ O.

• The set of the boundary conditions (b.c.) BVa with support in Va (the
overline means the complement of V in Zn) is the set of the tensor products
SVa é F

f
Va , where SVa ¥ SVb , and FVa ¥F

f
Va .

• The partition function, the free energy, the finite volume correla-
tion functions, with the b. c. SVa é F

f
Va :

Z{H; FVa é SVa}=C
SV

TrFVe
−bHV

F({T}, U, me, m i, JA, B)=− lim
VQ.

1
b |V|

ln{Z{H; FVa é SVa} (0.4)

OOP(SVa é FVa)=
;SV

TrFV{e
−bHVO}

Z{H; FfVa é SVa}
(0.5)

The trace is taken over the Fock space in V, meanwhile SVa é F
f
Va is fixed.

The correlation functions are the weak limits of the finite volume correla-
tion functions defined within the set of the b.c. BVa .
For sake of simplicity, we will use the following set of boundary con-

ditions and the following sub-algebra for the correlation functions.

• An element of the set of the boundary conditions SVb in Va, is
defined first by an ion’s configuration SVa ¥ SVb , and secondly we sum over
the (classical) configurations of frozen electrons FfVa . (Notice that the elec-
trons coming from V can wander in Va.)
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• The set of the finite volume correlation functions restricted to the
sub-algebraS with b.c. SVa :

7D
x ¥X

s(x)8
H

(SVa)

0.2. The Insulating Conditions

We want to find conditions on the hamiltonian H, which imply, that
the electrons are localized on some lattice sites. We notice that the effect of
the quantum part Hf of the hamiltonian H ¥ F is to move the electrons.
The W.I. condition goes in the opposite direction: it introduces a barrier
coming from the classical hamiltonian, to prevent the electrons from
moving.

0.2.1. The Weak Insulating (W.I.) Condition

At first we impose two natural conditions leading to the insulating
behavior:

(i) For each ion configuration S, there exists a configuration of
frozen electrons Ff, which minimizes the hamiltonian Hc. The configura-
tion {S, Ff} is called a conditional ground state.

(ii) If one add or remove one or several different electrons from a
conditional ground state {S, Ff}, there is a strictly positive energy gap K
for the hamiltonianHc per removed or per added electron.

The site energy at x is denoted −Hcx( · , · ), where ( · , · ) defines the configu-
ration at x. The first argument is the ion’s configuration, which is repre-
sented by • if there is an ion and by ” otherwise, the second argument
describes the electronic configuration, which is represented by − if there is
an electron, and by ” otherwise. The dependence of Hcx( · , · ) in the con-
figuration outside of the site x is not written explicitly. We have to compute
the four different expressions of Hcx( · , · )

Hcx(”, −)=−
mi

2
+

me

2
−
Û
2
− C
{X, Y | x ¥X; x ¥ Y}

J{X, Y}sX/xyY/x

+ C
{X, Y | x ¨X; x ¥ Y}

J{X, Y}sXyY/x− C
{X, Y | x ¥X; x ¨ Y}

J{X, Y}sX/xyY
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Hcx(”,”)=−
mi

2
−

me

2
+
Û
2
+ C
{X, Y | x ¥X; x ¥ Y}

J{X, Y}sX/xyY/x

− C
{X, Y | x ¨X; x ¥ Y}

J{X, Y}sXyY/x− C
{X, Y | x ¥X; x ¨ Y}

J{X, Y}sX/xyY

Hcx(•, −)=
mi

2
+

me

2
+
Û
2
+ C
{X, Y | x ¥X; x ¥ Y}

J{X, Y}sX/xyY/x

+ C
{X, Y | x ¨X; x ¥ Y}

J{X, Y}sXyY/x+ C
{X, Y | x ¥X; x ¨ Y}

J{X, Y}sX/xyY

Hcx(•,”)=
mi

2
−

me

2
−
Û
2
− C
{X, Y | x ¥X; x ¥ Y}

J{X, Y}sX/xyY/x

− C
{X, Y | x ¨X; x ¥ Y}

J{X, Y}sXyY/x+ C
{X, Y | x ¥X; x ¨ Y}

J{X, Y}sX/xyY

(A) The condition (ii) provides two alternative conditions, if there is
no ion at the site x:

Hcx(”,”)−H
c
x(”, −) > k > 0S −me+Û−2 C

{X, Y | x ¥ Y}
|J{X, Y} | > K > 0

Hcx(”, −)−H
c
x(”,”) > K > 0S me−Û−2 C

{X, Y | x ¥ Y}
|J{X, Y} | > K > 0

(B) The condition (ii) provides two alternative conditions, if there is
an ion at the site x:

Hcx(•, −)−H
c
x(•,”) > KS me+Û−2 C

{X, Y | x ¥X}
|J{X, Y} | > K

Hcx(•,”)−H
c
x(•, −) > KS −me−Û−2 C

{X, Y | x ¥ Y}
|J{X, Y} | > K

Note. These conditions do not involve the potentials depending of
the ion’s variables only.
The condition (ii) will be satisfied, if we combine one condition from

(A) with one condition from (B).

(I) Hcx(•, −)−H
c
x(•,”) > K; Hcx(”,”)−H

c
x(”, −) > K

(II) Hcx(•,”)−H
c
x(•, −) > K; Hcx(”, −)−H

c
x(”,”) > K

(III) Hcx(•, −)−H
c
x(•,”) > K; Hcx(”, −)−H

c
x(”,”) > K

(IV) Hcx(•,”)−H
c
x(•, −) > K; Hcx(”,”)−H

c
x(”, −) > K
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• Condition I (II): the set of the classical ground states is defined by
the configurations containing at each site either an isolated electron or an
isolated ion. (The conditions II is obtained from the condition I by using
the transformation sx Q −sx.) So we will consider the case I.

• Condition III (IV). The conditions III and IV are related by symme-
try. The set of the classical ground states is defined by the configurations
containing at each site either an hole or an ion (either a pair or an isolated
electron). There are no electrons to get quantum fluctuations. We have to
add electrons to permit quantum fluctuations, then we will be outside the
‘‘half filled band.’’ We will not considered this interesting case, which is
analyzed in ref. 39.

Then the condition I (II) defines the weak insulating condition, which
takes the form U > 0 (U < 0):

|me | < U−K; with U :=Û−2 C
{X, Y | x ¥ Y}

|J{X, Y} | (0.10)

Note. We believe that, in many cases the W.I. condition should be
enough to prove, at least in part, the results contained in this paper. For
the Falicov–Kimball model considered for me=mi=o (in our notations),
the W.I. condition is reduced to U > 0. This is precisely the condition
required by Kennedy and Lieb in ref. 2.

0.2.2. The Strong Insulating (S.I.) Condition

In this paper we need a stronger condition: the strong insulating (S.I.)
condition, which mainly requires that the (classical) energy gap K prevails
over the (quantum) hopping intensity of the electrons to prevent the
transport of electrons. We need some definitions:

||T||= C
{0 ¥ A … Zn}

5A
2
6!×2 A2×|tA |

We suppose that ||T|| is finite. Let C > 1 be a constant, next we define
U2=: C×U and me6=: C×me, notice that C and then me6 and U2 will change
along this paper.
We will say that an S.I. condition is satisfied if:

|r(me6 )| < r(U2 )− ||T||− exp−2b{r(U2 )− |(me6 )|− ||T||}+h.o.

h.o.=: ||T|| ·O 1 ||T||
r(U2 )
2+O(exp−2b{r(U2 )− |r(me6 )|− ||T||})

(0.11)
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Definition. D(H) is the manifold defined by the coupling constants
of H ¥ F satisfying an S.I. condition.

0.3. The Effective Hamiltonian

Next we define the class of the generalized Ising models, which con-
tains the effective hamiltonians of F.

0.3.1. The Generalized Ising Models I

HIV= C
{x ¥ V, X …PV}

JX D
{y ¥ (X+x)}

sy (0.6)

We suppose that there exists a positive constant D such that:

|JX | [ exp−DŒ.T[X] (0.7)

it is easy to show that there exists a constant D −m > 0, such that if DŒ > D
−

m:

C
{X ¥ Zn | o ¥X}

|JX | [. (0.8)

then, under the condition (0.8), the Gibbs states are the solutions of the
D.L.R. equations.

EH
I
[sX |SVa]=

;SV
e−bH

I[SV |SVa]sX(SV)

;SV
e−bH

I[SV |SVa]
(0.9)

0.3.2. The Effective Hamiltonians

Our goal is to give a rigorous meaning to the following formula, which
follows from the idea of ref. 2.

Z{H; SVa}=C
SV

[TrFV é Ff
Va
e−bH]=:C

SV

e−bHb(SV |SVa )

where the effective hamiltonian Hb ¥ I is built from a cluster expansion
expressed in term of the weights of the loops, which represent the quantum
fluctuations compatible with an ion configuration SV.

0.3.3. Definition.

The hamiltonian H ¥ F admits an effective hamiltonianHb if:

(I) Hb ¥ I
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(II) for any finite volume V, for any set X ¥ V, and for any boundary
condition SVa ¥ SVb the following identities hold:

OsXP
H (SVa)=EHb[sX |SVa] (0.12)

0.3.4. Definition

The ‘‘p order decomposition’’ ofHb(V) is:

Hb(V)=Ho
b(V)+· · ·+H

p
b(V)+ C

i=.

i=p+1
H j
b(V)

=:H [ p
b (V)+H > p

b (V) (0.13)

The truncated hamiltonianHp
b(V) is defined by the potentials for which p

hoppings factorize. The main point is that the potentials contained in the
tail hamiltonian H > p

b (V) decay exponentially. Notice that the truncated
effective potentials depend explicitly of the temperature. The main advan-
tage of this decomposition is that it is valid at every temperature, one could
study the existence of intermediate phases as well as the critical properties
of the model. The main inconvenient is that the computations of the
truncated effective hamiltonians are rapidly complicate. We define a more
convenient decomposition ofHb(V) relevant at low temperature only.

0.3.5. Definition

The low temperature (L.T.) p order decomposition ofHb(V)
Each q order effective hamiltonian (q [ p) splits into two parts:

Hq
b(V) :=Hq

.(V)+H
q
{w, b}(V)

where the potentials contained in Hq
.(V) are independent of the tempera-

ture, they are obtained by letting b Q. in the potentials of Hq
b(V).

H
q
{w, b}(V) are the temperature dependent potentials. The L.T. p order

decomposition of the effective hamiltonian is given by:

Hb(V)=Ho
.(V)+· · ·+H

p
.(V)+H [ p

{w, b}(V)+H > p
b (V)

H [ p
{w, b}(V) :=Ho

{w, b}(V)+· · ·+H
p
{w, b}(V)

(0.14)

The effective hamiltoniansHp
. are easy to compute from the loop’s repre-

sentation developed in this paper, or in some cases by some other
methods. (35, 36) H [ p

{w, b}(V) andH
> p
b act as a perturbation ofH [ p

. .
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Theorem. We consider the class of the hamiltonians H ¥ F, which
satisfy an S.I. condition (0.11).

(I) The hamiltonian H admits, for every temperature, an effective
HamiltonianHb.

(II) There exists a constant Ap > 0 such that, if b ||T||p+1

[U2 −
’
me]p
> Ap, Hb

admits a low temperature p order decomposition.

Note. The above approach can be generalized as follows: the set of
random variables sv can be replaced by more general r.v. such as a family
of gaussian r.v., in this case we get the static Holstein model. (27)

0.4. The Hierarchy of the Phase Diagrams: Pirogov–Sinai Theory

Next we construct the phase diagram of the models via the classical
Pirogov–Sinai (P.S.) theory, (14, 15) extended to the long range potential
hamiltonians in refs. 16a, 16b, and 17. The phase diagram is obtained
through a hierarchical construction starting from the zeroth order decom-
position of the effective hamiltonian, and by using the zeroth order P.S.
theory. The phase diagram will be refined by going to higher order.

Definitions. The ‘‘l shrinked domain’’ is defined by: Slp(B)=: {x ¥ B
… Rn | d(x, B̄) < lp}. In the following we will have to consider l= 1

U−|me|− ||T|| ,
hereafter we will use the short notation Sp(B) for Slp(B).

0.4.1. The Zero Order P.S. Theory

• We start from the zero order L.T. decomposition of the effective
hamiltonianHb.

Hb(V)=:H
o
.(V)+Ho

{w, b}(V)+H > o
b (V) (0.15)

Ho
.(V)= C

{X, Y ¥PV ×PV}
J{X, Y} C

{y ¥ V}
(−) |Y| s{X· (Y+y)}−

m i−me

2
C
x ¥ V

s(x)
(0.16)

where X·Y=X 2 Y−X 5 Y. We define the family of sub-manifolds
{D[o, ao]}ao ¥Mo …D(H) in which the P.S. theory can be applied toHo

., the
family is not empty, because for |me−m i| large, the P.S. theory applies.
These manifolds are generally separated by hyper-surfaces, along which
Ho
. is infinitely degenerated. Then we will prove that, the low temperature

zero order phase diagram is a smooth deformation of the phase diagram
of Ho

., if the coupling constants of H belong to the shrinked domains
{S1(D[o, ao])}ao ¥Mo .
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The model behaves like its classical part: this is the case I.
The phase diagram of H ¥ F remains unknown in D(H)/

{1ao So(D
[o, ao]). We have to go to the next order. More generally we will

suppose that the phase diagram of H ¥ F has been constructed up to the
order p−1, this means, that we have built the phase diagram of H in the
family of the shrinked domains {Sp−1(D[p−1, ap−1])}ap−1 ¥ Ap−1 . Next we con-
struct the p order P.S. theory.

0.4.2. The p Order P.S. Theory

•We start from the p order L.T. decomposition ofHb.

Hb(V)=H [ p
. (V)+H [ p

{w, b}(V)+H > p
b (V) (0.17)

We define the family of sub-manifolds {D[p, ap]}ap ¥ Ap …D(H) in which the
P.S. theory can be applied to H [ p

. , this family contains the shrinked sub-
manifolds {Sp−1(D[p−1, ap−1])}ap−1 ¥Mp−1 constructed from the p−1 order.
These manifolds are generally separated by hyper-surfaces, along which
H [ p
. is infinitely degenerated. Then we will prove that the p order phase

diagram of H is a smooth deformation of the phase diagram ofH [ p
. in the

shrinked domains Sp(D[p, ap]). Then, in general, two situations occur at the
order p.
The domains of phase coexistence, defined at the order p−1, are

enlarged,
The most interesting case: new quantum phase transitions appear in

new shrinked domains, this is the case II.

Corollary. The hierarchical structure of the phase diagram of H ¥ F.

The hamiltonian H ¥ F satisfies an S.I. condition (0.11). A[o, a(o)],
A[p, a, (p)] are positive constants.

(1) The zero order P.S. theory: for b > a[o, a(o)], the phase diagram
of H, which is obtained at the zero order, is a smooth deformation of the
phase diagram of the truncated hamiltonianHo

., if the coupling constants
of H belong to the shrinked domains {S1(D[o, ao])}ao ¥Mo …D.
(2) The p order P.S. theory: for b

||T||p+1

[U2 −’
me]p
> A[p, a(p)]. Then, for every

ap ¥Mp, the phase diagram of H, which is obtained at the p order, is a
smooth deformation of the phase diagram of the effective hamiltonian
H [ p
. in the family of shrinked domains {Sp+1(D[p, ap])}ap ¥Mp …D.

The paper is organized as follows. Section 1 deals with the loop’s
representation. Section 2 contains the construction of the effective hamil-
tonian. Section 3 contains the Pirogov–Sinai theory. The last section con-
tains the technical results:
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• Appendix A: the estimates on the contributions of the loops for
J{X, Y}=0.
• Appendix B: the Dobrushin’s inequalities.
• Appendix C: the cluster expansion for the conditional partition

functions.
• Appendix D: the construction of the effective hamiltonian.
• Appendix E: the extension to the case JX, Y ] 0.

1. THE LOOPS FEYNMAN–KAC REPRESENTATION

We will construct a twofold Feynman–Kac (F.K.) representation for
the matrix elements of the operator exp(−bHV), where H ¥ F.

1.1. The Feynman–Kac Representation via the Electron’s

Trajectories

We describe the usual F.K. representation,(10) which is expressed in term
of the electron’s trajectories, extended to the case of fermionic potentials
(Fig. 1). We define the extended space time L=V×[0, b), in which the
hyperplanes t=o and t=b are identified, this hyperplane V is called the
basis. We fix the orthonormal basis inKaV labelled by the pairs (F

f
V, SV) of

classical {0, 1}-configurations in V, and by the boundary conditions SVb é FVa
in Va. By S(F −V, F

'

V), we denote the set of all one-to-one mappings between
the electronic configurations F −V, F

'

V with |F
−

V |=|F
'

V | and by par p the parity
of the mapping p: F −V Q F

'

V. D((F
−

V é SV), (F
'

V é SV) |SVa é F
f
Va) is the

matrix element of exp(−bHV) in the reference basis:

D((F −V é SV), (F
'

V é SV) |SVa é F
f
Va)=0, if |F −V | ] |F

'

V |

D((F −V é SV), (F
'

V é SV) |SVa é F
f
Va)

= C
p ¥S(FŒV, FœV)

(−1)par p× D
j ¥ FŒV

1F
Mj, p(j)

Pj, p(j)(dwj)2

× exp−bHo
.(SV |SVa)× exp 5−(U+me) C

j ¥ V
T(•j, −j)6

× exp 5−(U−me) C
k ¥ V
T(”k,”k)6

× exp 3 −Fb
o
{W s(SV |SVa)−Wo(SV |SVa)} ds4

×V[w1 · · ·w|FŒV|] if |F −V |=|F
'

V | (1.1)
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The first term stems from the integration over the electron’s trajectories.
Mj, jŒ(=M

b
j, jŒ) is the set of right-continuous paths w of electron’s trajec-

tories of length time b inZnwithw(0)=limsQ 0 w(s)=j,w(b)=limsQ b w(s)
=jŒ, and Pj, jŒ(=P

b, L
j, jŒ ) denotes the path distribution restricted to Mj, jŒ of

the Markov jump process on Zn with jump’s intensity xQ y given by tx, y
(for the theory of these processes see, e.g., ref. 32). The conditional classi-
cal ground states are defined by an ion’s configuration [SV |SVa] together
with the set of equations sx · yx=−1, for all x ¥ V. Next we extract the zero
order effective hamiltonian Ho

. explicitly written in (0.16). T(•j, −j) is the
time which the path wj and the vertical ion line spend together above the
site j. T(”k,”k) is the time during which, a hole is living above the site k.
The next fourth terms are a convenient decomposition of the classical
energy density computed at the time s. First we extract fromHo

.[SV |SVa]
the term Wo(SV |SVa), which is the non on site part of Ho(SV |SVa).
W s(SV |SVa) is the classical energy density, computed at the time s, for a
given configuration in the space time. According to the b.c., the electron’s
trajectories can wander in L̄, provided that they intersect L.
The fermionic potential V[we1,..., w

e
p] is a function of the electron’s

trajectories [we1,..., w
e
n]. The action of a monomial t{(ao, bo);...; (an, bn}C*(ao)×

C(b0),..., C*(an) C(bn) is to attribute the ‘‘hopping’’ t{(ao, bo);...; (an, bn} to the
simultaneous jumps occurring on the set of bonds {(ao, bo),..., (an, bn)}.
The electron’s trajectories containing these simultaneous jumps are con-
nected by links. A maximal set of linked trajectories build a linked family
of electron’s trajectories. Notice that every configuration with a family of
jumps occurring at the same time has zero probability, as far as they do not
come from a fermionic interaction. The action of the fermionic interaction
hamiltonian on the space of the electron’s trajectories gives a ‘‘positive
probability’’ to simultaneous jumps. The resealed hopping intensity of a set
of linked jumps occurring on the set of bonds {(ao, bo),..., (an, bn)} is the
resealed intensity

t{ao, bo) · · · (an, bn)}
t(ao, bo) × · · · × t(an, bn)

. In addition, to identify the individual
jump’s times of the electrons on the bonds of {(ao, bo),..., (an, bn)}, we
insert the products of the d functions defined on the pairwise individual
hoppings’ times of the linked trajectories, which identify the jump’s times
of the simultaneous jumps. The fermionic potential V[{we1,..., w

e
p}] is the

product of the resealed hoppings of the linked trajectories, and of the pro-
ducts of the d ‘‘functions.’’

1.2. The Feynman–Kac Representation in Term of Loops

Next we construct the loop’s representation, which was first introduced
in ref. 11 for the case of the Hubbard model. A similar representation was
introduced in ref. 12 for the one dimension quantum Heisenberg model.
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Fig. 1. (a) A configuration in term of the ions lines and in the lectrons trajectories; (b) the
corresponding loops’ configuration. The loop l1 contains an electron’s jump of length 2, the
loops l2 and l3 build a linked loop.
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1.2.1. The Geometric Construction of the Loops (Fig. 1bis)

One of the following four situations occurs.

Case (i) There is an electron: we draw on the vertical lines a dashed
line with an up arrow.

Case (ii) There is an ion: we draw a dashed line with a down arrow.

Case (iii) There is a pair: we draw a continuous segment with an up
arrow.

Case (iv) There is a hole: we draw a continuous segment with a
down arrow.

We complete this construction with additional curves. When an elec-
tron hops from the site x to the site y, the points x to y are connected by an
horizontal curve of the same type and with the same arrow as the vertical
lines coming at the sites x and y. A configuration is now described by a
family of continuous loops and a family of dashed loops. All the vertical
lines are covered with parts of oriented loops, two loops of different kinds
meet along the additional lines of the loops, and secondly that some loops
may wind around the torus. Notice that two loops of the same kind cannot
intersect along the vertical parts except at the boundary points of their
vertical segments, they are said to be compatible. The loops are charac-
terized by their jump’s times. The time origin so is the F.K. time of
occurrence of an arbitrary jump of the loop, the other jumps’ times
{s1,..., sn}, are counted along the orientation of the loop.
Next we classify the continuous loops according to their homotopical

properties.

• The continuous non winding loops are denoted byLo.

• The winding continuous loops Lw are the up arrows winding con-
tinuous loops (resp. the loops L−w down arrows loops) with positive
winding number w (resp. with negative winding number −w). The loops
Lw
r are the loops of L

w with r jumps. The winding loops of L1
o have

winding number +1 and −1, they are defined by their orientations and by
the point of the loop with the basis.

Note. The loops interact in two ways: first through the fermionic
potentials, then we construct the linked loops, secondly through the classi-
cal potentials, then we construct the interacting linked loops.

1.2.2. The Linked Continuous Loops (Fig. 1bis)

The simultaneous jumps occur either in the same loop, or in different
loops by the fermionic potentials.
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• The support of a simultaneous jump is composed of a pair of sets
of vertices {B, C}, where B={b i1,..., b

i
p} is the support of the creation

operators of the fermionic potential, and C={c i1,..., c
i
p} is the support of

the annihilation operators. We have |B|=|C|.

• A pairing is a one to one correspondence between the elements of B
and the elements of C. In this case there exists p! different pairings, for
simplicity we will identify the pair {B, C} to a single letter A, and a pairing
of the pair with a pairing of AP. A family of pairings is written
AP={AP11 ,..., A

Pn
n }. We draw a set of links between the simultaneous

jumps of the loops, which correspond to a pairing (there is not a unique
choice),

• A linked continuous loop l̂ is a set of loops maximally connected
by links.

• A non winding linked continuous loop l̂ is defined by two sets:

(i) a family of even sets of vertices with a pairing AP=
{AP11 ,..., A

Pn
n },

(ii) a sequence of jump’s times composed of an arbitrary birth time
so counted in the F.K. time, the other jumps’ times {s1,..., sn−1}, one per
simultaneous jump, are ordered along the orientation of the each constitu-
ent loop of l̂, (a detailed construction of the jumps’ times is given in the
Appendix A).

• A winding linked continuous loop is defined by the two sets defined
above, supplemented by the family of the winding numbers of the constit-
uent winding loops of l̂.

We will need a refined decomposition of the winding loops lW. Any
time section of a winding loop lw ¥ l̂W by the hyperplane s=y, is crossed
by w+p up arrow continuous lines and by p down arrow continuous lines,
p depends of y, while w does not. Let (xo, 0) be one intersection of lw with
the basis. The part of the loop in between (xo, 0) and the first relative
maximum w.r.t. the time, defined by the space time point (x1, s1) is called a
reduced part, the corresponding jump is called a turning jump. After the
time s1, the loop wanders until it reaches again the hyperplane defined by
s=s1, the corresponding part of lw is called a bubble part. We iterate this
procedure until each constituent winding loop of lW has been totally
decomposed into a family of disjoint standard parts and a family of
disjoint bubble parts (Figs. 2a and b).
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Fig. 2. (a) A windind loop; (b) the same winding loop in which the reduced part appears
alone.

1.2.3. The Interacting Linked Continuous Loops

The classical hamiltonian creates, at each time s, either interactions
between different loops, which are at distance less that l, or self interactions
in a loop for pieces of the loop at distance smaller than l. The correspond-
ing rescaled energy density is defined by:

W2 s(SV |SVa) :=W s(SV |SVa)−Wo(SV |SVa)

The time’s section of the space time by the hyperplane Vs of a loop’s con-
figuration is composed of vertices which are the intersections of Vs with the
continuous up (resp. down) arrows, the corresponding vertices are called
up (resp. down) interacting vertices. The energy densityW2 s(SV |SVa) is non
zero if the hyperplane Vs contains up or down interacting vertices at dis-
tance less than 1.

Definitions.

• Two segments {x, [s1, s2]} and {y, [s1, s2]} belonging to two
continuous segments, which are either in the same continuous loop (self
interaction), or in two different continuous loops interact through Hc, if
x−y [ l and if [s1, s2] is of maximal length.

• The distance d(l̂1; l̂2) is the minimal distance between the vertical
segments of the loops l̂1 and of the loops l̂2 computed at the same time.

• Two loops interact if they interact through at least two vertical
segments.
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• An interacting linked loop lI is a maximal connected set of linked
loops {l̂1,..., l̂p} which interact.

1.2.4. The Loop’s Space L{ H; L}

We will use the generic term of ‘‘loop’’ for the continuous interacting
linked loop unless it needs to be specified. We have established a one to
one correspondence between two different representations of a quantum
configuration.

(1) An ion’s configuration together with a family of interacting elec-
tron’s trajectories.

(2) Two families of compatible oriented interacting linked loops
composed of a family of dashed loops and a family of continuous loops.

• The classical ground states are represented by vertical dashed
winding loops, each winding loop has a winding number which is equal to
±1.

• The continuous interacting linked loops represent the quantum
fluctuations, they will be the polymers used to build the cluster expansion.

Definition. L{H; L} is the set of loops intersecting L, which can be
built from H.

Note. The study of off diagonal correlation function needs a simple
extension of the loop’s representation: we introduce open loops which are
sticked to the basis. For example OC*xCyP is represented by mean of open
loops starting from x and ending at y. We refer to ref. 34 for more details
in the case of the FK model.

1.2.5. The Signed Densities (s.d.) of the Loops

First notice that the term ‘‘signed density’’ is a convenient abuse of
language. We recall and extend the essential properties of the loop’s space
proved in ref. 4.

• Each non linked non interacting loop l is endowed with an intrinsic
sign E(l) due to the Fermi statistics of the electrons. For completeness we
sketch the proof. Every electronic configuration defines the sign (−1)par p

(1.1), which factorizes into the product of the signs attached to each loop
of the configuration, the main reason is that, the electrons located ‘‘above’’
and ‘‘below’’ a given loop, belong to the same set, but are generally permuted.
The parity of this permutation defines the sign attached to the loop.

• The sign of the s.d. of a linked interacting loop l̂I is the product of
the signs of the s.d. of the constituent loops of l̂I.
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• The s.d. of the non winding loops do not depend of the chemical
potential, because the vertical lengths of the up arrow lines and of the
down arrow lines are equal, meanwhile the s.d. of the winding loops do.
We write successively the s.d. of:

• a non winding non interacting loop l,

• a winding non interacting loop l ±w with either a positive or a
winding number w,

• a non winding linked loop l̂ built from the family of non winding
linked loops {l1,..., lq},

• a winding linked non interacting loop l̂w,

• a general linked interacting loop l̂I, which is built from the family
of linked non winding loops {l̂1,..., l̂p} and from the family of winding
linked loops {l̂w1 ,..., l̂

w
q }.

j(l)=E(l) t(xo, x1)× · · · × t(xn, xo)q(s1,..., sn)

× exp−Û C
i=n−1

i=o
mi(si+1−si)+W2 s1,..., sn(l)

j(l ±w)=E(l ±w)×t(xo, x1)× · · · × t(xn, xo)×q(s1,..., sn)

× exp 3 −b |w|{Û±me}−Û C
i=n−1

i=o
mi(si+1−si)4

× exp{W2 s1,..., sn(l ±w)}

j(l̂)=tAo × · · · × tAn ×D
j=p

j=1
E(lj)× exp 3 −Û C

i=n−1

i=o
mi(si+1−si)4

×q(s1,..., sn)× exp{W2 s1,..., sn(l1,..., lq)}

j(l̂w)=tAo × · · · × tAn

×5D
j=r

j=1
E(lj) exp 3 −Û C

i=n−1

i=o
mi(si+1−si)4×q(so,..., sn)6

×5D
k=s

k=1
E(lwkk ) exp{−bwk(Û+me)}6

×5D
l=u

l=1
E(l−w

−

l
l ) exp{−bw −l(Û−me)}6× exp{W2 sŒ1,..., sŒn(l ±w)}

j(l̂I)=5D
i=p

i=1
j(l̂i)×D

j=q

j=1
j(l̂wj )6× expW2 (l̂1,..., l̂p; l̂w1 ,..., l̂wq )

(1.2)
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• {so; s1,..., sn} are the jump’s times of the loop, so is the F.K. time of
a jump, which is taken as the origin, q(s1 < · · · < sn) is the characteristic
function of the ordered jump’s times counted along the orientation of the
loop with origin so.

• The positive integers mi are the numbers of vertical segments con-
tained in the non winding linked loops between the times si+1 and si, and
the numbers of vertical segments contained in the bubble parts of the
winding linked loops between the consecutive times si−1 and si.

• W2 sŒ1,..., sŒn(l) is the sum of the energy densities piecewise constant
between two successive jumps’ times of the loop l (here the jumps’ times s −i
are the Feynman–Kac times).

• W2 (l̂1,..., l̂p; l̂
w
1 ,..., l̂

w
q ) is the integrated interactions’ energy densi-

ties and self energy densities of the linked interacting loop built from the
loops {l̂1,..., l̂p; l̂

w
1 ,..., l̂

w
q }.

1.3. Loop’s Representation of the Correlation Functions

We define the basic notion of conditional ensemble. The conditional
ensembles, which are the quantum analogs of the restricted ensembles
introduced in the classical statistical mechanics. (9)

1.3.1. Definitions

• The conditional ensemble COND(H; SV |SVa) is the subset of the
loops of L{H; L}, which are compatible with the ion’s configurations SVa
in V, and SVa in Va

• The conditional partition function Z{H; SV |SVa} is the restriction
of the partition function, associated to the hamiltonian H, to the conditio-
nal ensemble COND(H; SV |SVa).

1.3.2. Proposition

The conditional partition functions, the partition function, and the
correlation functions, defined from the hamiltonian H, are expressed in the
loop’s F.K. representation:

(i) Z{H; SV |SVa}=exp−bHo
.(SV |SVa)

×5 C
{l̂I1 · · · l̂

I
r } … COND(H; SV |SVa )

D
r

i=1
j(l̂Ii )6

742 Messager



(ii) Z(H; SVa)=C
SV

Z(H; SV |SVa)

(iii) OsXP
H (SVa)=

;SV
Z{H; SV |SVa} sX(SV)
Z(H; SVa)

(1.3)

Proof. The representation (i) is the transcription of the F.K. repre-
sentation, previously written in term of electron’s trajectories, into the F.K.
representation written in term of linked interacting loops (polymers). The
representations (ii) and (iii) are trivial consequences of (i). L

2. THE EFFECTIVE HAMILTONIANS

We will show that every hamiltonian H which satisfies an S.I. condi-
tion, admits an effective hamiltonianHb, through a two steps construction.
First we will prove the existence of a convergent cluster expansion (C.E.) in
the space time, for every conditional partition function. Secondly we will
perform a time’s resummation of the truncated functions of the clusters
living in the space time, which are projected on the same family of sets of
the basis leading to the definition of the effective potentials (Appendixes C,
D, E).

2.1. Definitions: Clusters (Fig. 3)

• Two interacting linked loops are incompatible, if there exists at
least two loops one in each interacting linked loop, which intersect.

• A cluster C[T,AF P] is defined by two sets: (21, 23) (i) a set of incom-
patible interacting linked loops {l̂I1,..., l̂

I
p} ¥ COND(H; SV |SVa), (ii) a set

of integers {a(l̂I1),..., a(l̂
I
p)}, which are the multiplicities of occurrence of

the corresponding interacting linked loops building the cluster, T is the set
of jump’s times of the constituent loops, and AF P={AFP11 · · ·AF

Pn
n } is the

family of the pairings corresponding to the linked loops of the cluster. It
will be identified with a linked directed graph in the basis.

• CONDT(H; SV |SVa] is the set of the clusters built from the loops
belonging to COND(H; SV |SVa).

• C[T,AF P]QA is the set of clusters which are projected on the
setA.

In the next proposition we express the effective hamiltonian in term of
the previous potentials. Notice that, SA ¥ SV 2 SVa , means that SA is the
restriction toA of SV 2 SVa .
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Fig. 3. One cluster built from four intersecting loops: the winding loops l1 and l2, the
nonwinding loop l4 and of the linked loop built from the loops l5 and l6.

2.2. Proposition

The hamiltonian H satisfies an S.I. condition (0.11).

(i) Then every conditional partition function is written as:

Z{H; SV |SVa}=exp−b 3Ho
.[SV |SVa)+ C

{SA ¥ SV 2 Vb}
Yb[SA]4 (2.1)

(ii) Then, for every A ¥ Â[H; SV |SVa], the effective potentials
decay exponentially:

|Yb[SA]| [ exp−K.T(A)

Yb[Sv]=b−1 log[1+exp(−b(U−sv |me|)]
(2.2)

Proof. The proof of the proposition is the core of the paper, it is
mainly contained in the appendixes. We construct the effective potentials
associated to a given hamiltonian H ¥ F in three steps. The first step is the
existence of a convergent cluster expansion (C.E.) for the quantum fluc-
tuations leaving in the space time (polymers) , which arise in each condi-
tional partition function Z{H; SV |SVa}. In fact we will use the discretized
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F.K. representation given in the Appendix A. Then, in the Appendixes B
and E, we will be able to generalize the method initiated by Dobrushin for
the classical case (21) to the quantum case, to prove the existence of a con-
vergent C.E., which requires in our case a first S.I. condition (0.11). Then
the truncated functions f(C[T,AP]) are defined as the multiple derivati-
ves of ln[Z{H; SV |SVa}] w.r.t. the discretized s.d. of the loops (21) (see
Appendix C for a definition). NOTICE the following crucial fact: every
truncated function is defined locally, it depends ONLY of the restriction of
the ion’s configuration {SV |SVa} to the projection of the constituent loops
of the clusters on the basis. The second step is a time’s resummation of the
truncated functions, which are projected onto the same set on the basis.
These resummations lead to the definition of the effective potentials for any
{SA ¥ SV 2 Vb}:

Yb[SA]= C
{C[T,AP]QA}

f(C[T,AP]) (2.3)

The potentials are shown to decay exponentially in the tree distance in the
Propositions C.2.2. and E.3.1.
Notice that the potentials depend of b, but that the upper bounds on

the tail’s potentials do not, except the weights of the winding loops of L1
o,

which contribute to the chemical potentials, they are infinite for b=0. This
is harmless because we can substract the constant b−1 per lattice site for
small b. L

2.3. Corollary

The hypothesis of 1.2.2. holds.

(i) The hamiltonian H admits an effective hamiltonian Hb defined
by:

Hb[SV |SVa]=Ho
b[SV |SVa]+· · ·+H

p
b[SV |SVa]

+ C
{SA ¥ SV 2 Vb | |A| > p+1}

Yb[SA] (2.4)

where the p order truncated hamiltonian is defined by:

H
p
b[SV |SVa]=: C

{SA ¥ SV 2 Vb | |A|=p}
Yb
p[SA]

|A|=p means that the clusters which build the potentials contain p jumps.
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(ii) There exists a strictly positive constant Ap such that: if
b ||T||p+1

[U2 −|’me|]p
> Ap, the hamiltonianHb admits a p order LT decomposition:

Hb[SV |SVa]=Ho
.[SV |SVa]+· · ·+H

p
.[SV |SVa]+R

{b, w}
p [SV || SVa]

+ C
{SA ¥ SV 2 Vb | |A| > p+1}

Yb[SA] (2.5)

where

H
p
b[SV |SVa]=:H

p
.[SV |SVa]+H

p
{b, w}[SV |SVa]

R{b, w}p [SV || SVa]=: C
{SA ¥ SV 2 Vb | |A| [ p}

Y{b, w}[SA]

Proof. Part (i): We use the Proposition 2.2. to define the effective
hamiltonian. Part (ii): We decompose the p order effective potentials into
two parts:

Yb
p[SA]=:Y

{b, w}
p [SA]+Y.

p [SA] L

The Proof of the Theorem. The finite volume correlation functions
restricted to the sub-algebra S, within the set of the b.c. SVb , coincide with
the finite volume Gibbs expectations built fromHb ¥ I.

OsXP
H (SVa)=EHb[sX |SVa] (2.6)

We know from the Proposition C.2.2. that the tail’s potentials decay
exponentially, and that, at low temperature, the potentials contained in
H
q
{w, b}, for q [ p are of order p+1. Then the infinite volume limits of the

correlation functions, restricted to S, within the set of the boundary con-
ditions SVa , are the solutions of the D.L.R. equations of the Gibbs fields
defined from the hamiltonian Hb. Secondly we prove that the effective
hamiltonian Hb is translation invariant. As H is translation invariant, Ho

b

is translation invariant. The effective potentials are built from the transla-
tion invariant hoppings, they are translation invariant. L

3. PIROGOV–SINAI THEORY: PHASE DIAGRAM

We treat the two dimensional case. The extension to higher dimensions
is easy. We deduce from the theorem that, every hamiltonian H ¥ F satisfy-
ing an S.I. condition (0.11), admits an effective hamiltonian Hb ¥ I. Then
we get the phase diagram of H ¥ F by applying to the effective hamiltonian
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Hb the classical P.S. theory extended to infinite range many body poten-
tials performed in refs. 16a and b, we will use the optimal results of ref. 17
valid for potentials decaying exponentially. The main feature of our
approach is the existence of a hierarchy of phase diagrams via the ‘‘p order
P.S. theory’’ built from the L.T. p order decomposition of the effective
hamiltonianHb. An application to the FK model is given in ref. 5.

3.1. Definitions

• The p order P.S. theory for the hamiltonian H ¥ F has a twofold
meaning:

(1) the P.S. theory applies to the truncated effective hamiltonian
H [ p
. ,

(2) the hamiltonians H > p
b and H [ p

{w, b} act as perturbations of the
truncated hamiltonianH [ p

. .

• A lattice block of size n×n is such that each square is contained in
n2 blocks. A n×n block has to contain all the interactions of the hamilto-
nian strictly contained in the block.

• A good block is a block with a configuration which minimizes the
energy. A block which is not a good block is called a bad block.

• A local ground state is a connected set of good blocks.

• The family of the ground states of the type [r, q] is denoted by
Ŝ[r, q]={S[r, q]

1 ,..., S[r, q]
n }, they are indexed by the order r in the hierarchy,

and by the class number q in this order.

• A contour is a pair {G, cG}, where G is a maximal connected set of
blocks, and cG is a configuration of bad blocks defined on G. The inner and
the outer boundaries of the contours have to be specified, they will be
singled out when it is needed. We use the same symbol for the contour and
for its support.

• A configuration in V is represented by a family of contours
C[r, q]={c[r, q]1 ,..., c[r, q]n }. In general the set of contours contains open con-
tours, which are connected to the boundary of V. In the following, we
consider the b.c. defined in Va by good blocks of the same ground state.
Then a configuration in V is defined by a set of closed contours. Next we
define, for each configuration SV, the subset of the exterior contours
C[r, q]
ext(q)=: {c

[r, q]
1 ,..., c[r, q]s } and the subset of the interior contours C[r, q]

int. =
{c[r, q]s+1 ,..., c

[r, q]
n } contained in {1 i=r

i=1 Int(c
[r, q]
i }.
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Next we construct the hierarchy of the phase diagrams for the hamil-
tonians belonging to F and satisfying an S.I. condition. We begin by the
zeroth order.

3.2. The Zero Order P.S. Theory: Phase Diagram of H È F Obtained

at the Zero Order: Case I

We start from the zero order decomposition of the effective hamilto-
nianHb.

Hb(V)=Ho
.(V)+H > o

b (V)+Ho
{w, b}(V) (3.1)

3.2.1. The P.S. Theory for Ho
.

We suppose that the manifold D is partitioned into a family of |Mo |
submanifolds {Do, ao}ao ¥Mo …D, in which the P.S. theory can be applied to
the truncated hamiltonian Ho

.. Notice that this family contains is not
empty, because for the large values of the chemical potentials |me−m i|, the
P.S. can be applied. The requirements of the P.S. theory are twofold.

(i) There exists |Mo | P.S. decompositions ofH
o
..

Ho
.(V)=H{[o, ao], o}

. (V)+C
i=n

i=1
E[o, ao]i H{[o, ao], i}(V) (3.2)

E[o, ao]i are real functions of the coupling constants ofHo
.. The hamiltonian

H{[o, ao], o}
. has a finite set of ground states built with Laoo ×L

ao
o good blocks:

Ŝ[o, ao] — {Ŝ[o, ao]
1 ,..., S[o, ao]

n[o, ao]
}, moreother the hamiltoniansH{[o, ao], t} have to

remove the degeneracies of the ground states of Ŝ[0, ao]. (15) The b.c. are
defined by patching Va by Laoo ×L

ao
o good blocks of the same ground state.

A configuration SV, compatible with the b.c., is described by a family of
closed contours. C[o, ao]={c[o, ao]1 ,..., c[o, ao]n } including their inner and outer
configurations.

(ii) The Peierls condition holds for the contours of C[o, ao] built from
Ho
.: there is a strictly positive function C

[o, ao]
o depending of JA, B and of me,

(in fact this condition has to be satisfied for every kind of contours), such
that the energy w.r.t.Ho

. of a given contour is bounded by:

|go.(c
[o, ao]
i )| > C[o, ao]o ×|c[o, ao]i | (3.3)

3.2.2. The Zero Order P.S. Theory for Hb
The P.S. theory, which is valid for Ho

. will be extended to the full
hamiltonianHb, if we verify the three following conditions.
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(i) The existence of |Mo | P.S. decompositions of Hb, which are the
P.S. decompositions ofHo

. modified by the terms of higher order.

(ii) The Peierls condition for Hb: there are two strictly positive
functions C[o, ao]o and C[o, ao]1 depending of JA, B and of me such that:

|gob(c
[o, ao]
i )| > 5C[o, ao]o −C[o, ao]1

||T||2

U2 −|me6 |− ||T||
6×|c[o, ao]i | (3.4)

The additional term include the upper bound on the higher order potentials
including the contribution of the winding loops, which supports are the
supports of the potentials of Ho

., then we use the estimate (b) of the
Proposition C.2. to get the estimate.

(iii) The tail potentials decay exponentially, which follows from the
Proposition C.2.

Finally, following ref. 17, we deduce that the zeroth order phase
diagram of H ¥ F is a smooth deformation of the phase diagrams ofHo

. in
eachone of the shrinked domain {S0(D[o, ao])}ao ¥Mo .

Note. The phase diagram of Hb remains unknown in D−
{1ao=|Mo|

ao=1 S0(D[o, ao])}. Next we refine the zeroth order phase diagram by
going to the next order decomposition of Hb, in general two cases will
appear at the first order.

• Case I. The same phase transitions appear in the domains
S0(D[o, ao]), which are slightly enlarged meanwhile the range of temperature
slightly increases.

• Case II. The most interesting case is the appearance of new
domains emerging in between the hypersurfaces for which, there is infinite
degeneracy of the ground states for the hamiltonian Ho

.. Such a situation
occurs when the truncated hamiltonian H1

. lift the degeneracy of the
ground states, then new domains appear in which new quantum phase
transitions appear.

As the structure is general, we will suppose that the phase diagram has
been built up to the order p−1, then we build the p order.

3.3. The p Order P.S. Theory: The Phase Diagram of H È F Obtained

at the Order p

We start from the p order decomposition ofHb:

Hb(V)=H [ p
. (V)+H > p

b (V)+H [ p
{w, b}(V) (3.5)
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We suppose that the manifold D is partitioned into a family of |Mp | sub-
manifolds {D[p, ap]}ap ¥ Ap …D, in which the P.S. theory can be applied to the
truncated hamiltonianH [ p

. . This family contains at least the family of the
shrinked domains Sp−1(D[p−1, ap−1]) constructed at the order p−1.

3.3.1. The P.S. Theory for the Truncated Effective Hamiltonian H [ p
.

(i) There exists |Mp | P.S. decompositions ofH
[ p
. .

H [ p
. (V)=H{[p, ap], o}

. (V)+C
j=q

j=1
E*[p, ap], jH

{[p, ap], j}
. (V) (3.6)

Notice that the first |Mp−1 | decompositions at the order p differ from the
corresponding decomposition at the order p−1 only by additionnal terms
of order U−p. The ground states of H{[p, ap], 0} are Ŝ[p, ap] — {S[p, ap]

1 ,...,
S[p, ap]
n[p, ap]
}. A configuration SV compatible with the b.c. defined by good

blocks in Va, is represented by a family of closed contours of the type
[p, ap]: c[p, ap] — {c[p, ap]1 · · · c[p, ap]n } including their outer and inner configu-
rations.
Now we have to distinguish between two cases.

Case I. |Mp−1 |=|Mp |. The p order P.S. decomposition is a refine-
ment of a decomposition obtained at lower orders. We follow exactly the
same route. We first notice that the size of the corresponding blocks
Lapp ×L

ap
p defining the ground states generally increases even for the same

ground states because the range of the potential generally increases. The
Peierls condition is obtained at a higher level of accuracy. Then the
domains in which the same phase transitions occur are slightly larger and
the range of temperature is slightly larger than those obtained at lower
orders.

Case II. |Mp−1 | < |Mp |. There is a new P.S. decomposition: there is a
new family of ground states, which can be distinguished at the order p, and
which could not be distinguished at the order (p−1). This means, in par-
ticular, that the Peierls condition is satisfied for the corresponding contours
at the order p.

(ii) The Peierls condition for the contours of the type [p, ap] w.r.t.
H
p
.: there exists a strictly positive function C

[p, ap]
o of JA, B, of {T}, and of

me such that:

|g [ p
. (c

[p, ap]
i |C[p, ap]

int. )| > C
[p, ap]
o ×

||T||p+1

[U2 −|me6 |− ||T||]p
|c[p, ap]i | (3.7)
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3.3.2. The p Order P.S. Theory for Hb
The p order P.S. theory can be extended fromH [ p

. toHb, if we prove
the three following conditions.

(i) The P.S. decomposition ofHb is the P.S. decomposition ofH
[ p
.

modified by terms of higher order.

(ii) The Peierls condition for the contours of the type [p, ap] w.r.t.
Hb: there exist two strictly positive functions C

[p, ap]
o and C[p, ap]1 functions

of JA, B of {T}, and of me such that:

|gb(c
[p, ap]
i |C[p, ap]

int. )|

> 5C[p, ap]o −C[p, ap]1

||T||

U2 −|me6 |− ||T||
6× ||T||p+1

[U2 −|r(me6 )|− ||T||]p
|c[p, ap]i | (3.8)

The additional term includes the upper bound on the higher order poten-
tials (including the winding loop contribution) of range p, which are
estimated in the Proposition C.1.2. estimate b.

(iii) The tail potentials decay exponentially. This follows from the
Proposition C.2.

Then, following ref. 17, we deduce that the p order phase diagram of
H is a smooth deformation of the phase diagram of H [ p

. in the shrinked
domains {Sp(D[p, ap])}ap ¥Mp .

4. THE HIGH TEMPERATURE REGIME

4.1. Corollary

The hamiltonian H ¥ F satisfies an S.I. condition together with the
condition, (C > 0).

b 5 ||T||2

|r(U2 )|− ||T||− |r(me6 )|
+|1−e−b(|r(U2 )|− |r(

’
me)|− ||T|||6 < C (4.1)

(i) There is uniqueness of the correlation functions restricted to the
subalgebraS w.r.t. the set of the boundary conditions included in S̄.

(ii) The correlation functions are analytic functions of the coupling
constants.

The proof follows from known results about the classical systems at
high temperature. (13)

Spinless Electrons Strongly Correlated with Ions 751



APPENDIX A. ESTIMATES FOR THE HAMILTONIANS H È F, JX, Y =0

We derive the estimates, which are needed to prove the existence of a
convergent C.E. for every conditional partition function defined from
H ¥ F. At first we take JX, Y=0 (U=Û). The dependence of our estimates
in H ¥ F will be frequently skipped, because it appear in the notations
{T, U, me, m i}, where T denotes the set of the hoppings. r(U) (real part
of U) can be chosen to be positive because of the symmetries of the hamil-
tonian. To perform a convergent C.E. for every conditional partition func-
tion, we use a lattice approximation for the F.K. representation, which
starts from the Trotter formula. (10) Finally we will use the theorems about
the limits of sequences of complex analytic functions to go back the con-
tinuous case.

A.1. The Discrete Feynman–Kac Representation

The space time Zn×{o, b} is converted into a lattice Zn×{0, Sb}, the
time’s variables take integer values. Let LS=V×{0, bS} … Zn×{0, bS} be
a subset of the lattice. The main change w.r.t. the continuous case is that
the jumps of the loops occur at discrete times. Obviously the geometric and
the topological properties of the discrete loops and of the continuous loops
are the same. The notations used for the discrete case are used for the con-
tinuous case, but supplemented by an additionnal subscript S. We adapt
the previous definitions to the discrete case.

• J(l̂) is the set of jumps of the non winding loop l̂S. The jumps of a
linked loop are supported by a family of pairings AP — {APoo ,..., A

Pn
n }. The

birth’s time bo is a F.K. chosen arbitrarily among the jump’s times bo is the
origin of the ordered jump times {b1,..., bn} counted along the orientation
of the loop.

• A winding linked loop as l̂WS ¥ COND(H; SV |SVa) is generally
composed of two families of loops: a family of non winding loops
{l1S,..., l

p
S}, and a non empty family of winding loops {l

w1
S ,..., l

wq
S ;

l−w
−

1
S ,..., l

−w −r
S }, the winding numbers wj and w

−

k are positive integers.

• The winding number of l̂W is |W|=; i wi+; j w
−

j.

• Every winding loop is decomposed into its standard parts and into
its bubble parts defined in 1.2.2, the bubble parts contain a set of jumps
Jb(l̂WS )={J

b(lw1S ),..., J
b(lwqS ); J

b(l−w
−

1
S ),..., J

b(l−w
−

r
S )}, the jumps which

connect the bubble parts and the standard part belongs to the standard
part. The remaining set of jumps, including the turning jumps is the set:
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J st(l̂W)={J st(lw1S ),..., J
st(lwqS ); J

st(l−w
−

1
S ),..., J

st(l−w
−

r
s )}. The integers mi are

the numbers of the vertical segments of the constituent loops of l̂S, which
are in between the times bi+1 and bi. For example, the discrete signed
probability (d.s.p.) of the loop l̂S takes the form:

jS(l̂S)=:
1
Sn+1

tAo × · · · × tAn D
j=p

j=1
E(lj)

× exp 3 −U
S

C
i=n−1

i=o
mi(bi+1−bi)4 q(b1,..., bn) (A.1)

The d.s.p. of the winding loops are obtained in the same way.

• The discrete conditional partition function associated to the
discrete conditional ensemble CONDS(H; SV |SVa) takes the form:

ZS(H; SV |SVa)=e−bH
o
.(SV |SVa ) C

{l̂1S · · · l̂
p
S; l̂

{w, 1}
S ,..., l̂{w, r}S } … CONDS(H; SV |SVa )

×D
i=p

i=1
jS(l̂

i
S) D
j=r

j=1
jS(l̂

{w, j}
S ) (A.2)

The convergence of the discrete partition function to the continuous one is
a standard result. (11)

A.1.1. Definitions: Projection of the Loops on the Basis

• The projections of the oriented edges, of the links, of the bond of
the loop l̂IS on the basis build a linked interacting directed graph with even
incidence at each vertex (l.i.d. graph) AFP (P is a pairing).

• Two linked interacting loops are equivalent, if their projections on
the basis are identical: l̂IS ’ m̂IS ’ AF

P.

• The unoriented graph AP is the l.i.d. graph AFP without its orienta-
tion. AFPQ AP is the set of the l.i.d. graphs with the same unoriented graph.

• A complete family of linked winding loops (resp. non winding loops)
Fw
[a, a+1)(AF

P) … COND(H; SV |SVa) (resp. Fn, w
[a, a+1)(AF

P) … COND(H;
SV |SVa)) is the set of the equivalent linked winding loops (resp. non
winding linked loops) projected on AFP, which birth’s time belongs to
[a, a+1); the dependence w.r.t. H and (SV |SVa) is skipped, because it is
contained in the structure of AFP itself. We define four sums:
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F{p, nw}S, {x, b}(SV |SVa)= C
{l̂S ¥ COND(H; SV |SVa ) | {x, b} ¥ l̂S}

S×jS(l̂S)×5
b1
S
6p

F{p, w}S, {x, b}(SV |SVa)=
exp−b{r(U)−sx |r(me)|}

b

+ C
{l̂WS ¥ COND(SV | {x, b} ¥ l̂

W
S }
S×jS(l̂

W
S )×5

b1
S
6p

F
p
S[F

nw
[a, a+1)(AF

P
i )]= C

{l̂S ’ gFi) | {x, b} ¥ l̂
nw
S ; b ¥ [a, a+1)}

S×jS(l̂
nw
S )×5

b1
S
6p

F
p
S[F[a, a+1)(AF

P
i )]=

exp−b{r(U)−sx |r(me)|}
b

+ C
{l̂S ’ AF

P
i | {x, b} ¥ l̂S; b ¥ [a, a+1)}

S×jS(l̂S)×5
b1
S
6p

• F
p
S[U, T] (resp. F

p
S[U, T, me]) is the uniform upper bound for

F
p
S, {x, b}(SV |SVa) (resp. F

p
S, {x, bo}(SV |SVa)) w.r.t. the underlying ion’s con-

figuration, and w.r.t. their birth’s time. The corresponding limits SQ.,
when it exists, is denoted by Fp[U, T] (resp. by Fp[U, T, me]).

• F[F[a, a+1)(AFP)] (resp. F[Fnw
[a, a+1)(AF

P)]) is the limit SQ. (if it
exists) of F

p[FS
[a, a+1)(AF

P)] and respectively F[FS, nw
[a, a+1)(AF

P)]. In the
following we will rather consider F[F[o, 1)(AFP)], (in short notation
Fp, nw[AFP]), and respectively F[FS

[o, 1)(AF
P)], (in short notation Fp, w[AFP]),

because our bounds will be time invariant.

Note. In this appendix, we have to find upper bounds for various
sums of d.s.p. It is easier to replace the Riemann sums by the correspond-
ing integrals. This is a consequence of the two following facts.

• First we bound the discrete sums by their modulus.

• Secondly the Riemann sums are bounded from above by the corre-
sponding integral, because the integrand is a decreasing function and the
discrete sum begins from one.

Proposition A.2. The hamiltonians H ¥ F; JX, Y=0 satisfy an S.I.
condition (0.11).

(a) Then the following estimates hold for every directed graph
AFP ] v, and for every b.
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(i) |Fp[Fnw
[o, 1)(AF

P)]| [
p!
r(U)p

×
< i=n
i=o |tAi |
r(U)n

(ii) |Fp[Fw
[o, 1)(AF

P)]| [ 3 p!
[r(U)−r(me)]p

4D
i=n

i=o
|2
Ai
2 tAi | 3

1
r(U2 )− |r(me6 )|

4n

(iii) |Fp[U, T]| [ 3 p!
r(U)p
4× ||T||2

r(U)− ||T||

(iv) |Fp{U, T, me}| [ b−1 exp(−b[r(U)− |r(me)|)

+3 p!
[r(U)−r(me)]p

4× ||T||2

r(U)− |r(me)|− ||T||

(A.3)

(b) There exists two positive constants Cp and Ap such that, if
b
||T||p+1.

r(U)p
> Ap, then:

|F[U, T, me]| [ Cp
||T||p+1

[r(U2 )−r(me6 )]p
(A.4)

Proof of Estimate a(i). We begin with a complete family of non
winding loop l̂S, which projection on the basis is the directed graph AFP.
The jumps’ intensities of these loops are {t{xo, yo} · · · t{xn, yn}}, the birth’s time
is bo, the other jump’s times of the loops are {b1,..., bn}. We bound the
Riemann sums by the integral.

:D
i=n

i=o
t{xi, yi} 5 C

bo=S

bo=o

1
S

C
bn=.

bn=n

1
S
e−U

bn
S C
bn−1=bn

bn−1=n−1

1
S
· · · C

b1=b2

b1=1

bp1
Sp+1
6:

[D
i=n

i=o
|t{xi, yi} | 5F

1

0
dso F

.

0
e−snr(U) dsn F

sn

0
dsn−1 · · ·F

s2

0
sp1 ds16

Next, by an easy computation, we get the upper bound:

|Fp, nwS [AFP]| [D
i=n

i=o
|t{xi, yi} | 5F

1

0
dso F

.

0
e−snr(U) dsn F

sn

0
dsn−1 · · · F

s2

0
sp1 ds16

[ p!×D
i=n

i=1
|t{xi, yi} | F

.

o
e−snr(U)×

s{n+p}n

(n+p)!
dsn

[
p!
r(U)p

×
< i=n
i=o |t{xi, yi} |
r(U)n

(A.5)
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We have done three successive integrations.

• The integration over the birth’s time so in the interval (0, 1]

• The integrations of the ordered jumps’ times {s1 · · · sn}.

• n+p integrations by part.

The extension of the previous computation to the case of a linked non
winding loops is straightforward. Let {l1,..., lp} be the constituent loops of
the linked loop l̂.

• A jump’s time, which is integrated in the s.p. of a loop li, is said to
be an active time for li, if not, it is said to be a dummy time for li. We
choose a jump’s time of l1 as birth’s time, then the jumps’ times of l1 are
taken to be active except if simultaneous jumps occur in l1 itself, due to the
fermionic potential, in this case we choose arbitrarily one such jump’s time
to be active. Then we order the active jumps’ times of l1, taking the birth’s
time as the origin, according to the orientation of the loop. The loop l1 is
linked to at least one loop, say l2 by, at least, one simultaneous jump. The
common jump’s times between l1 and l2 are considered as active times
for l1, they are dummy for l2. Next we proceed for l2, we order the active
jump’s times of l2 as we did for l1, taking as birth time for l2 a dummy
time of l2. We iterate this process up to the last loop lp. Now, to get the
estimate for the linked loop l̂, we begin the integration by the active jump’s
times of lp (if there are no, we consider lp−1, and so on) by using the pre-
vious estimates for the non linked loops. The integration of the active times
is iterated up to the loop l1. In fact we get the products of the integrated
s.d. of each constituent loop over their the active times. The final integra-
tion of the birth’s time of l1 over [o, 1) gives 1. L

Proof of Estimate a(ii). We have two cases to consider. First we
suppose that sp1 belongs to the bubble part of the loop. A winding linked
loops l̂W, which is projected on the directed graph AFP ] v, is built from a
family of p non winding loops (l1,..., lp) and from a family of r linked
winding loops (lw11 ,..., l

wq
q ; l

−w −q+1
q+1 ,..., l

−w −r
r ). The s.p.d. of l̂W is bounded by:

|j(l̂W)| [ |tA1 |× · · · × |TAn |×q(s1,..., sn)× exp 3 −r(U) C
i=n−1

i=o
mi(si+1−si)4

× exp−bwk{r(U)+r(me)}× exp−bw −l{r(U)−r(m
e)} (A.6)

We need an S.I. condition (0.11) to be able to perform the following
operations.
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• We decompose the jump’s times of l̂W into the active times and
into the dummy times, as we did previously.

• We decompose each winding linked loops into their standard parts
and into their bubble parts (Figs. 3a and b).

• We factorize the hoppings of the standard parts contained in
J st(l̂W), we recall that the first jump (turning jump) of every bubble part is
included in J st(l̂W)).

• We integrate the r active ordered jumps’ times of Jb(l̂W).

• We factorize the product of the hoppings of the jumps contained in
Jb(l̂W), and in the non winding linked loops.

• We integrate over the (n−r) active jump’s times of Jb(l̂W) (exclud-
ing the turning jumps) by using the estimate i), notice that the bubble parts
of the loop have the same structure as the non winding linked loops.

• We integrate over the active jump’s times of the non winding linked
loops.

|Fp, w[AFP]| [
p!
r(U)p

exp−b |W|{r(U)− |r(me)|}×3 D
j ¥ Jb(l̂W)

|tAj |
r(U)
4

×3 D
i ¥ Jst(l̂W)

|tAi |}×3F
b |W|

0
dsp · · ·F

s1

o
ds1 4

[
p!
r(U)p

exp−b |W|{r(U)− |r(me)|}×3 D
i ¥ Jst(l̂W)

|tAi |4

×
[b |W|] |J

st(l̂W)|

|J st(l̂W)|!
×3 D

j ¥ Jb(l̂W)

|tAj |
r(U)
4 (A.7a)

We recall that sp1 belongs to the standard part of the loop, then we get:

|Fp, w[AFP]| [ p!{b |W|}p exp−b |W|{r(U)− |r(me)|}

×3 D
i ¥ Jst(l̂W)

|tAi |4×
[b |W|] |J

st(l̂W)|

|J st(l̂W)|!
×3 D

j ¥ Jb(l̂W)

|tAj |
r(U)
4 (A.7b)

Next we sum over all the possible decompositions of the linked loop
into non winding parts and winding parts, such that their union is
projected onto the directed linked graph gF. We notice that the action of a
fermionic potential with hopping tAi ; creates

Ai
2 jumps, which involve either

winding loops or non winding loops, the number of choices is obviously
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bounded by: ; p C
p
Ai
2
=2

Ai
2 . More other each jump appear either in a bubble

of a non winding loop or in the standard part. This means that each
directed graph contained in AFP can be patched with oriented segments,
which are either the projections of standard parts or of bubble parts of a
loop. Let n be the length of the directed graph, there are Cqn decomposi-
tions of a directed graph into q disjoint oriented segments, because we need
q points to build q disjoint segments on a circle. Finally we sum over the
winding numbers. Notice that ifW> 0, q > 1, and that |W| [ q.

|Fp, w[AFP]| [ p!× C
|W|=.

|W|=0

5 1
r(U)p

+{b |W|}p6×D
i=n

i=o
|TAi |×2

Ai
2

C
q=n

q=1
Cqn× exp−b |W|{r(U)− |r(me)|}×

[b |W|]q

q!
×

1
r(U)(n−q)

[ p!D
i=n

i=o
|tAi |×2

Ai
2 C
q=n

q=1
Cqn 53

1
r(U)− |r(me)|

4q+p 3 1
r(U)
4{n−q}

+3 1
r(U)− |r(me)|

4q 3 1
r(U)
4{n−q+p}6

[
p!

[r(U)−r(me)]p
D
i=n

i=o
|tAi |×2

Ai
2 ×5 1
r(U)− |r(me)|

6n (A.8)

The second inequality follows from the following inequality valid for
(r(U)− |r(me)| > 0 and p > 0:

C
W=.

W=1
e−{b |W| · (r(U)− |r(me)|)}×

{b · |W|}p

p!
< 3 1
r(U)− |r(me)|

4p (A.9)

To get the proof of this inequality, we just bound the sum by the
integral. L

Proof of Estimate a(iii). We need first an auxiliary lemma, which
requires two definitions. L

Definitions.

• I (n)(x0, to)(H[SV |SVa) is the sum of the hoppings of the loops, which
can exist through the action of the hamiltonian H ¥ F starting from the
point (xo, to) after n (simultaneous) jumps.
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• Nn(T, U) is the uniform bound for I
(n)
(x0, to)(H[SV |SVa]) w.r.t. the

configuration [SV |SVa], and w.r.t. the birth’s time. Next we define:

|T|n= C
{0 ¥ A … Zn | |A| [ n}

5A
2
6 !× |TA |

Then the limit: lim{nQ.} |Tn |=|T| exists because ||T|| <..

Lemma A.2.1. For any hamiltonian H ¥ F, the following bound
holds:

Nn(T, U) [ |T|n (A.10)

Proof. The estimate is obtained through a recurrent procedure on
the number of successive jumps (level).

Level 1. The first action of the fermionic hamiltonianHf.
We start from the point {ao, so}, at which either a jump or a family of

simultaneous jumps occurs under the action of the Hamiltonian Hf. One
of the following situations occurs:

• One monomial of the interaction acts, then the electron, which is at
the point {ao, so} jumps to the point {bo, so}, with the corresponding
hopping tao, bo . To take into account all the possible jumps, we sum over all
the different hoppings containing one point. We get the upper bound: |T|1.

• Next we consider the action of a product of two monomials. There
exists two different pairings between the creation and the annihilation
operators of the potential. A given pairing creates two simultaneous jumps
for two electrons which jump from the points (ao, so) and (a1, so) up to the
points (bo, so) and respectively to (b1, so), the corresponding ‘‘hopping’’
is t(ao, a1)(bo, b1). Let us remark first that the action of the fermionic interaction
can be either in the same loop or in two different linked loops, and
secondly that there are two possible pairings. Then we get the upper bound
for the sum of the fermionic intensities containing one point:
2!; {a1, bo, b1} |t(ao, a1; bo, b1) |

Next we consider the case of a fermionic interaction, which is
composed of a product of p monomials, then we can build p! different
pairings, and, at most, p! loops. Then, after the first step, we have the
upper bound:
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N1(T, U) [ |T|1+4 C
{bo, a1, b1}

|t(ao, a1; bo, b1) |

+ · · ·+n! C
{a1,..., an−1; bo,..., bn−1}

|t(ao,..., an−1; bo,..., bn−1) |

[ |T|n (A.11)

Level m. The mth action of the fermionic hamiltonianHf.
We iterate the process defined above up to the time sm−1. We consider

the set of points which are the intersection of the hyperplane s=sm and of
the branches of the constituent loops of the linked loop, which were created
at previous times so · · · sm−1. Then, at the time sm > sm−1 the fermionic
interaction acts, this means that, at each space time point attained at the
previous time, the process defined at the first step, is repeated. The follow-
ing upper bound follows:

Nm(T, U) [N(m−1)(T, U)×N1(T, U) [ |T|
m+1
n (A.12)

The case of infinite monomials interaction can be considered as well,
provided that the ‘‘hoppings’’ satisfy the condition (A.10): |T| <., to get

Nm(T, U) [ |T|m+1

Next we derive the estimate a(iii). We point out that the upper bound
obtained in a(i), either for a linked non winding loop with m jumps, differs
by the hoppings only. So that, to sum over the different loops, i.e., over the
different products of m hoppings, we use the estimate of the Lemma A.2.1:
we replace every hopping contained in the estimate (i) by |T| and then by
||T|| to get.

|Fp{U, T}| [ p!× C
.

m=1

|T|m+1

r(U)m+p
[
p!
r(U)p

×
||T||2

r(U)− ||T||
(A.13)

Proof of Estimate a(iv). We start from the estimate a(ii), then we
performed the following successive summations.

• First we start from the Lemma A.2.4., in the estimate, we replace
each hopping by ||T||.

• Next we sum over the number of jumps.
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• Finally we add the contribution of the winding loops without jump.

|Fp[U, T, me]| [ 3
p!

[r(U)−r(me)]p
4 ||T|| C

n=.

n=1

5 ||T||
r(U)− |r(me)|

6n

+b−1 exp(−b[r(U)− |r(me)|)

[ 3 p!
[r(U)−r(me)]p

4 ||T||2

r(U)− |r(me)|− ||T||

+b−1 exp(−b[r(U)− |r(me)|) (A.14)

Proof of Estimate b. We start from the estimate a(ii) in which we
sum over the graphs of the basis including the winding loops without jump.
Next we performed the following summations.

• We sum the hoppings involved in the constituent parts of the linked
winding loops, keeping their times’ jumps fixed. We use the Lemma A.2.1,
in which we replace every hopping appearing in the estimate a(ii) by ||T||.

• We sum over the s.d. of the bubble parts and of the linked winding
loops, provided that their numbers and their relative positions are fixed.
The S.I. condition implies in particular that r(U)− ||T|| > 0.

• We sum over the standard jumps, the bubble parts and the number
of non winding loops by using the estimate (iii). We notice that n \ |W|.

|F[T, U, me]| [ b−1 C
|W|=.

|W|=1
exp−b |W|[r(U)− |r(me)|]

×3 C
n=.

n=|W|+1

5b |W|× r(U)× ||T||r(U)− ||T||
6n

n!
4

[ b−1 C
|W|=.

|W|=1
exp−b |W| 3r(U)− |r(me)|−

r(U)× ||T||
r(U)− ||T||
4

[ Cb−1 exp−b 3r(U)− |r(me)|−
r(U)× ||T||
r(U)− ||T||
4 (A.15)

• Next we suppose that b
||T||p+1

[r(U)−r(me)]p
> Ap. Then there are two posi-

tive constants Cp and C
−

p:

|F[U, T, me]| [ C
−

pb
−1 [ Cp

||T||p+1

[r(U)− ||T||]p

This concludes the proof.
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APPENDIX B. THE DOBRUSHIN’S INEQUALITIES

The study of convergent cluster expansion on a lattice in the classical
statistical mechanics is done in many papers see for example refs. 21–24.
Our goal is to prove the existence of a convergent C.E. for every conditio-
nal partition function Z(H; SV |SVa). We extend one of the last papers of
Dobrushin, (21) partly devoted to the C.E. in the classical case, to the
quantum case. Dobrushin’s approach relies on the existence of an upper
bound for the logarithm of the ratio of two partition functions associated
to two different volumes, here a volume means a set of loops. The main
difficulty in the quantum case stems from the continuous time appearing in
the F.K. representation. We use the lattice approximation introduced in the
Appendix A. To prove the ‘‘discrete’’ Dobrushin’s inequality, for finite S,
we choose a real positive bounded function BS(l̂S), which depends of the
length and of the number of jumps of the loop.

BS(l̂)=exp 3a(H)×
|l̂S |
S
+b(H) |J(l̂S)|4

|l̂S| is the sum of the lengths of the vertical segments of the loop l̂S, |J(l̂)|
is the number of jumps of l̂S. a(H) and b(H) are bounded positive func-
tions. Notice that limSQ.

|l̂S|
S=|l̂|. The following limit exists:

B(l̂)= lim
SQ.

BS (l̂S)=exp{a(H)× |l̂|+b(H) |J(l̂)|}

Proposition B.1. The ‘‘discrete’’ Dobrushin’s inequality. The
hamiltonian H ¥ F; JX, Y=0 satisfies an S.I. condition (0.11).

|r(me6 )| < r(U2 )− ||T||− exp−b[r(U2 −|r(me6 )|− ||T||]+h.o.

(i) There exist two functions a(H), b(H), and two strictly positive
constants C1, C2:

a(H)=: ||T|| 3 ||T||
r(U)
+b ||T|| exp−b[r(U)− |r(me)|− ||T||)+h.o.]4 < C1 ||T||

b(H)=: 5 ||T||
r(U)−r(me)

62+exp−b 5r(U)− |r(me)|−
||T||
U
6 < C2

(B.1)
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s.t., for every arbitrary ‘‘volume’’ VS … CONDS(H, SV |SVa), the discrete
Dobrushin’s inequality holds:

: ln 3 ZVS
(H; SV |SVa)

ZVS/l
i
S
(H; SV |SVa)

: [ exp 5C1 ||T||
|l̂ iS |
S
+C2 |J(l̂

i
S)|6×|j(l̂ iS)| (B.2)

(ii) The partition function ZVS
is an analytic function of the d.s.p.

j(l̂ iS) and j(l̂{W, i}S ). Then ZVS
(H; SV |SVa) can be expanded into a con-

vergent C.E. in the d.s.p. of the loops.

Proof. Part (i). To prove the inequality, we have to prove the condi-
tion contained in the hypothesis of the first theorem of ref. 21. It is easier
to prove the stronger K.P. condition (22), We have to find the conditions
under which, the following uniform K.P. condition (w.r.t. the conditional
ensemble) is true:

C
{l̂oS ¥ COND(SV |SVa ) | l̂

o
S ¾ l̂

1
S}
|j(l̂oS)| exp 5a(H)

|l̂oS |
S
+b(H) |J(l̂oS)|6

[ a(H)×
|l̂1S |
S
+b(H) |J(l̂1S)| (B.3)

The symbol ¾ means that the loops l̂1S and l̂oS are incompatible, i.e., that
they intersect along at least one vertical segment. This means that there
exists one vertical segment of length DS(l1)=: (l1−l

−

1) of l̂1S and one verti-
cal segment of length DS(lo)=: (lo−l

−

o) of l̂oS, which intersect. Let us fix at
first DS(l1), then we shift the loop l̂oS in the time’s direction keeping the
intersection property between l̂1S and l̂oS, then the corresponding range of
variation of lo is DS(l1)+DS(lo). In other words, when two loops intersect
along two segments DS(lo) and DS(l1), we have to insert a factor
[DS(lo)+DS(l1)] in the integrand. This fact will be used repetitively in the
resummation process. The sum of the s.p. of the loops incompatible with
l̂1S splits into two parts: the first one, which does not contain the loops
of Lw

o , is proportional to |l̂
1
S |; the second one, which contains the loops

ofLw
o , is proportional to |J(l̂

1
S)|.

C
{l̂oS ¥ COND(SV |SVa ) | l̂

o
S ¾ l̂

1
S}
|j(l̂oS)| exp 5a(H)

|l̂oS |
S
+b(H) |J(l̂oS)|6

[
|l̂1S |
S
3 C

g

{l̂oS | bo ¥ l̂
o
S}
S× exp 5a(H) |l̂

o
S |
S
+b(H) |J(l̂oS)|6 |j(l̂oS)|4
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+|J(l̂1S)| 35 C
g

{l̂oS | bo ¥ l̂
o
S}
|j(l̂oS)|×DS(l1) exp 5a(H)

|l̂oS |
S
+b(H) |J(l̂oS)|66

+exp−b(r(U)− |r(me)|)4

[ |l̂1 | {Fo[exp{b(H)}× ||T||, r(U)−a(H)]

+Fo[exp{b(H)}× |T|, r(U)−a(H), r(me)]}

+|J(l̂1)|{F1[exp{b(H)}× ||T||, r(U)−a(H)]

+F1[exp{b(H)}× ||T||, r(U)−a(H), r(me)]} (B.4)

;* means that the sum does not contain the loops of L1
o. In the two last

lines we used the fact that the Riemann sums are bounded by the corre-
sponding integral. To get the fourth line of (B.3), we have used the estima-
tes contained in a(i) and in a(ii) of the Proposition A.1, in which we have
made the following changes: UQ U−a(H), and ||T||Q exp{b(H)}× ||T||.
So that we suppose that the coupling constants of the hamiltonian H
satisfy a stronger condition S.I., which is defined by doing the correspond-
ing changes. The K.P. condition, that we have to satisfy, is now equivalent
to find the two functions a(H) and b(H), which fulfill two inequalities:

X[a(H), b(H)]=: Fo[exp{b(H)}||T||, r(U)−a(H)]

+Fo[exp{b(H)}||T||, r(U)−a(H), r(me)] [ a(H)

Y[a(H), b(H)]=:
F1[exp{b(H)}||T||, [r(U)−a(H)]]
r(U)− exp{b(H)}||T||−a(H)

+F1[exp{b(H)}||T||, r(U)−a(H), r(me)] [ b(H)

(B.5)

For all the finite fixed values of the coupling constants satisfying the S.I.
condition. X[a(H), b(H)] and Y(a(H), b(H)] are strictly positive increas-
ing functions of a(H) and b(H), both start from a positive value at
a(H)=0 and goes to infinity for a(H)=r(U)− exp{b(H)}× ||T||. We want
to find the smallest value of a(H): a(H) and of b(H): b(H) provided that
an S.I. condition holds. From simple algebraic computations, we find that
there exists two positive constants C1 < 1 and C2 < 1, such that the K.P.
condition is satisfied:

a(H)=C1×||T||, b(H)=C2 (B.6)
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The final S.I. condition is defined from the previous S.I. condition by
making the following changes:

UQ U−C1 ||T||; ||T||Q ||T|| exp(C2)

This concludes the proof of the validity of the discrete Dobrushin’s
inequality.

(ii) To get the last statement of the proposition, we iterate the
discrete Dobrushin’s inequality to the set of the loops of LS. Then, for
every fixed S, every discrete conditional partition function is an analytic
function of the family of the s.p. j(l̂ iS) and j(l̂{W, i}S ) of the loops contained
in LS. (21)

Here comes the major difference between the classical C.E. and the
quantum C.E.: the discrete Dobrushin’s inequality obtained by removing
one loop l̂ iS from VS, is not enough to prove the analyticity of the limit
SQ. of the conditional partition function, because of course the s.p. of a
discrete loop goes to zero when SQ.. Nevertheless the probability densi-
ties could be defined in the limit SQ. if an S.I. condition holds. Another
way to get a meaningful Dobrushin’s inequality is to apply the discrete
Dobrushin’s inequality to a complete volume V … COND(H; SV |SVa)
built from the unions over the unit times intervals of two sets of complete
families of loops: the first one {F{o, 1}[AF

P
1 ] · · ·F{o, 1}(AF

P
p )} is composed of

non winding loops, and the second one of winding loops: {Fw
{o, 1}(AF

P
1 ),...,

F{o, 1}(AF
P
q )}. It is convenient to distinguish by a site index the rescaled

hopping
tAi
U , and the chemical potential mej associated to the coupling con-

stants corresponding to these complete families. L

Proposition B.2. The ‘‘quantum’’ Dobrushin’s inequality. The
hypothesis of the Proposition B.1.1. are satisfied.

(i) Then, for every complete volume V … COND(H; SV |SVa) built
from the complete families {F[o, b)(AF

P
1 ),..., F[o, b)(AF

P
p ); Fw

[o, b)(AF
P
1 ),...,

Fw
[o, b)(AF

P
q )}, the ‘‘quantum’’ Dobrushin’s inequality holds:

:Ln 3 ZV(H; SV |SVa)
ZV/F[o, 1](AF

P
i )
(H; SV |SVa)

4: [< j=n
j=o exp(C2)× |tAj |
|r(U)−C1 ||T|||n

(B.7)

(ii) ZV(H; SV |SVa) is an analytic function of the two sets of
variables {

tAi
U }i, {exp−b[U−mej]}j.
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Proof. Part (i). We apply the discrete Dobrushin’s inequality to the
quotient of the two partition functions defined in the two ‘‘volumes’’ VS

andVS/F
S
[0, 1](AF

P
i ):

:Ln 3 ZVS
(H; SV |SVa)

ZVS/F
S
[o, 1](AF

P
i )
(H; SV |SVa)

4:

[ 5D
j=n

j=o
exp(C2)× |tAj |6 C

bo=S

bo=o

1
S

C
bn=.

bn=n

1
S
e−[(r(U)−C1 ||T||]

bn
S C
bn−1=bn

bn−1=n−1

1
S
· · · C

b1=b2

b1=1

1
S
(B.8)

The R.H.S is a multiple Riemann sum bounded from above for every S, by
the corresponding integral provided that the S.I. condition is satisfied.
Then we take the limit SQ. of the L.H.S. to get the ‘‘quantum’’
Dobrushin’s inequality.

lim
SQ.

:Ln 3 ZV
S(H; SV |SVa)

Z{VS/FS[o, 1](AFPi )}(H; SV |SVa)
4:

[D
i=n

i=o
eC2 |tAi | 3F

1

o
dto F

.

0
e−t1[r(U)−C1 ||T||] dt1 F

t1

0
dt2 · · ·F

tn−1

0
dtn 4

:Ln 3 ZV(H; SV |SVa)
Z{V/F[o, 1](AFPi )}(H; SV |SVa)

4: [< i=n
i=o exp(C2)× |tAi |
|r(U)−C1 ||T|||n

(B.9)

Part (ii). By iterating the inequality (B.8) over all the complete
families, which compose V, we deduce that every conditional partition
function Z(H; SV |SVa) is uniformly bounded provided that the above S.I.
condition is satisfied. Then every conditional partition function is an
analytic function in the weights of the complete families, i.e., in the two
families of variables {[

tAi
U ]}i; {exp−b[U−mej]}j} for every fixed b. L

APPENDIX C. THE CLUSTER EXPANSION IN THE SPACE

In the previous section, we have proved the existence of a convergent
C.E. for every discrete conditional partition function ZS(H; SV |SVa). Next
we want to prove the existence, for every hamiltonian H, of an effective
hamiltonian Hb defined on the basis Zn, which potentials decay exponen-
tially. This will be done by performing a time and a space resummation of
the truncated functions. The reference to the conditional ensemble and to
the hamiltonian H appears only in the local structure of the cluster itself.
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3.1. The Cluster Expansion in the Space Time

3.1.1. Definitions: Clusters (Fig. 3)

• A cluster CS[T,AF P] is built from a maximally connected family of
intersecting loops {l̂1S,..., l̂

p
S}, and from a set of integers {a(l̂

1
S) · · ·a(l̂

p
S)},

which are the multiplicities of the loops in the cluster, {T} is the family
of jump’s times, and AP ’ {APoo ,..., A

Pn
n } is the set of the supports of

the correspondent hoppings with a given pairings P. We denote by
C{S, w}[T,AF P] a cluster, which contains at least one winding loop.

3.1.2. Definitions: Projections of the Clusters on V

The projection of the cluster CS{T,AF P} on V is a set of l.i.d. graphs
AF P ’ {AFP1 ,..., AF

P
n }, each AF

P
i is the projection of a constituent linked loops

building the cluster.

• Two clusters CS[T,AP] …VS and CS(TŒ,AP] …VS are equivalent
(CS[T,AP] ’ CS[TŒ,AP]), if their projections on the basis are the same
linked graph.

• AF P QAP is the set of the directed graphs, which support are the
same unoriented graph.

• The complete family of clusters FS
[a, a+1)(AF

P) (resp. FS
[a, a+1)(A

P))
is the set of the equivalent clusters projected on the same graph AF P (resp.
the same unoriented graphAP), which birth’s times belong to [0, 1).

Now we suppose that an S.I. condition holds, such that the discrete
Dobrushin’s inequality holds. Then every discrete conditional partition
function ZVS

is an analytic function of the d.s.p. j(l̂ iS) of the loops con-
tained in VS, provided that S is finite. Next we can expand, via the Taylor
formula, the logarithm of the partition function (21) in term the d.s.p. of the
loops, leading to the definition of the truncated functions:

ln ZVS
[((H; SV |SVa)]=FVS{l̂

1
S,..., l̂

p
S}

:= C
CS[T,AP] ¥VS

R(AF P) D
i=p

i=1
[j(l̂ iS)]

a(l̂iS)

:= C
CS[T,AP] ¥VS

f(CS[T,AP])

= C
{AFP QA

P}

3 C
{CS[T,AP]QAFP}

f(CS{T,AP})4 (C.1)
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The coefficients R(AF P) depend of the geometry of the cluster CS[T,AF P]
only, and then of AF P, they will be bounded later. We will omit the
subscript ‘‘S ’’ The truncated functions of the cluster C[T,AP], are built
from the partition function restricted to the constituent loops of the cluster
C[T,AP]. (21)

Notes.

(A) The truncated function of the cluster C[T,AP], is built from the
partition function restricted to the constituent loops of the cluster
C[T,AP] ONLY ref. 21.

(B) One of the main differences between the C.E. in continuous cases
and the C.E. in the discrete case is that only the truncated functions
defined on the continuous clusters composed of loops with multiplicity one
contribute. It is straightforward to see that the sum over the jump’s times
of every power larger than one of a d.s.p. of a loop goes to zero, when
SQ.. Notice the exception of the linked loops ofL1

o.

3.1.3. Definitions: Trees in the Space Time

• Every constituent loop of a cluster C[T,AF P] is identified with a
point of the space time. Two points are connected if the corresponding
loops intersect. This construction is iterated to all the constituent loops of
the cluster. We built the dual graph C*[T,AP] … LS. Let T(AF P) be the
set of spanning trees built from C*[T,AP]. (23) Infinitely many clusters
have the same spanning tree y(AF P) ¥T(AF P), which come out by varying
the jumps’ times of its constituent intersecting loops. The clusters of
F[o, 1)(AF P) are decomposed into the y(AF P) equivalent classes {C[T,AF P]Q
y(AF P)}, which are the clusters with the same spanning tree.

3.2. The Space-Time Summation

3.2.1. Definitions: Towards the Effective Potentials

It will be convenient to make a three steps summation of the truncated
functions to get the expression of the effective potentials. Notice that the
birth’s time of the cluster will be integrated over the interval [o, 1).

Step I. The sum over the clusters with the same spanning tree.

fb[y(AF P)]= C
{C[T,AFP]Q y(AFP)}

f(C[T,AF P]) (C.2)
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Step II. The sum over the spanning trees built fromT(AF P).

f̃b[T(AF P)]= C
{y(AFP) ¥T(AFP)}

fb[y(AF P)] (C.3)

Step III. The sum over the potentials, which have the same family of
sets. We have, in particular, to sum over all the pairings of A, (we add the
subscript ‘‘w’’ when the cluster contains a winding loop).

Yb[SA]= C
{AFP QA}

fb[T(AF P)] (C.4)

Definition. The sum of the potentials, which clusters contain at least
one winding loops is written:

R{b, w}p [SV |SVa]= C
{SA ¥ SV 2 SVb | o ¥A, |A| [ p}

|Yb, w
A [SV |SVa]| (C.5)

Proposition C.2.2. The Hamiltonian H ¥ F; JX, Y=0 fulfills an S.I.
condition.

(a) Then the following general bounds hold:

|Yb
p[SA]| [ [r(U2 )− |(me6 )|]×D

i=n

i=2

5|Ai |
2
6 !× |tAj |
r(U2 )− |r(me6 )|− ||T||

Yb[Sv]=b−1 log[1+exp(−b(U−sv |me|)]

(C.6)

(b) Moreother for b
||T||p+1

[r(U)−r(me)]p
> Ap and for |A| < p, we get:

|R{b, w}p [SV |SVa]| [
||T||p+1

[r(U2 )− |r(me6 )|− ||T||]p
(C.7)

Before going to the proof of the proposition, we prove the corollary:

Corollary C.2.3. The hamiltonian H ¥ F; JX, Y=0 fulfills an S.I.
condition, then we get:

C
{SA ¥ SV 2 SVb | o ¥A, |A| [ p}

|Yb[SA]| [. (C.8)
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Proof. We start from the estimate (A) of the Proposition C.1.2.

• We sum over all the hoppings. We use the Lemma A.2.1), we
replace [ |Ai|2 ]!× |tAi | by ||T||.

• We sum over the number of hoppings.

C
{SA ¥ SV 2 SVb | o ¥A, |A| [ p}

|Yb[SA]|

[ ||T||× C
n=.

n=1

5 ||T||
r(U2 )− |r(me6 )|

6n+b−1 log[1+exp(−b(U−sv |me|)]

[
||T||2

r(U2 )− |r(me6 )|− ||T||
+b−1 log[1+exp(−b(U−sv |me|)] (C.9)

The chemical potential is infinite for b=0, this is harmless because we can
withdraw, for small b, from the chemical potential the term b−1 per vertex,
then the sum will be finite.

Proof of the Proposition C.2.2. We adapt the usual method of
resummation of clusters, done in the classical case (see, for example,
ref. 23, p. 976), to the quantum case with the following changes.

• First two intersecting loops of a cluster intersect along vertical
segments.

• Secondly the sum over the weights of the contours containing one
point, has to be replaced by an integral over the jump’s times of the s.p. of
the loops. The sum is done in three steps:

Step I. the sum of the s.d. of the loops belonging to the complete
clusters with the same tree y.

Step II. the sum over the spanning trees of the dual graph
C*[T,AF P].

Step III. the sum over the different loop’s decompositions of the
families of clusters, which have the same set of jumps, together with the
sum over the pairings.

3.2.2. Step I. The Summation over the S.P. of the Clusters
C[T, AF P] Q y(AF P)

The sum of the truncated functions of the clusters of C[T,AF P]Q
y(AF P) is done according to a prescribed order. The time’s integrations are
always performed over the active times.
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• We first integrate the s.p. of the loops of the zeroth generation
{l̂o1 · · · l̂

o
ao}, by using the estimates a(1) and a(2) of the Proposition A.2

keeping the intersection property. These families of loops are in one to one
correspondence with the vertices of the tree y(AF P), which have incidence
number one.

• Let y1(AF P) … y(AF P) be the tree obtained by removing from y(AF P)
its boundary edges. Then we proceed by integrating the s.p. of the loops of
the first generation {l̂11 · · · l̂

1
a1}, which are in one to one correspondence

with the vertices with incidence one in y1(AF P).

• yn(AF P) … yn−1(AF P) is the last iteration of the process, the tree is
now reduced to one point, which is the loop l̂n1, we integrate the s.p. of l̂n1
including its birth’s time, which belongs to the interval [o, 1).

We follow the previous scheme, we begin by the integration of the
s.d. of the loops of the zeroth generation Lo=: {[l̂o{1, 1} · · · l̂

o
{1, a1}],...,

[l̂o{2, 1} · · · l̂
o
{2, a2}] · · · [l̂

o
{r, 1} · · · l̂

o
{r, ar}]}, which intersect a given loop l̂11 of the

first generation along one of its segment say D(t1). This family is parti-
tioned into r subfamilies, each subfamily is composed of loops belonging to
the same complete family. Let D(t1) be the intersection between the loop l̂11
and between the loops of Lo. The corresponding segments of the loops of
Lo are denoted by:

To=: {[D(to{1, 1}) · · ·D(t
o
{1, a1})],...,

[D(to{2, 1}) · · ·D(t
o
{2, a2})] · · · [D(t

o
{r, 1}) · · ·D(t

o
{r, ar})]}

We need to estimate the following quantity:

S[Lo ¾ l1]=:
1

a1!× · · · ×a r!
j(l1)

Q D
i=a1

i=1
×F j(lo{1, i}) d(l

o
{1, i})× · · · × D

i=ar

i=1
F j(lo{r, i}) d(l

o
{r, i}) (C.10)

The symbol Q in the integral means that the loop l1 intersects each loop
of Lo in the way described above. The factorials, which are in front of the
R.H.S., stem from the fact that, after the integration of the s.p., the loops
belonging to the same complete family are indistinguishable. Now we use
the fact contained in the proof of the Proposition B.1: the intersection
property between the loops l1 and lo{1, i} is equivalent to insert a factor
[D(t1+D(to{1, i})] in the integrand:

Spinless Electrons Strongly Correlated with Ions 771



S[Lo ¾ l1]=j(l1)×
1

a1!× · · · ×a r!

×5D
i=a1

i=1
F j(lo{1, i})[D(t

1)+D(to{1, i})] d(l
o
{1, i})

× · · · × D
i=ar

i=1
F j(lo{r, i})[D(t

1)+D(to{r, i})] d(l
o
{r, i})6

=
1

a1!× · · · ×a r!
× C
j=ao

j=o
j(l1) D(t1) j

×3 C
Ij …Ij

D
i=a1

i=1
F j(lo{1, i})[D̂(t

o
{1, i}] d(l

o
{1, i})

× · · · × D
i=ar

i=1
F j(lo{r, i})[D̂(t

o
{r, i})] d(l

o
{r, i})4 (C.11)

The set Ij is the set of the subsets of the set of indices {(1, 1),..., (1, a1);...;
(r, 1),..., (r, ar)} containing j elements. The summation over Ij …Ij has
the following meaning:

D̂(to{1, i})=D(to{1, i}) if {1, i} ¥ Ij; D̂(to{1, i})=1 if {1, i} ¨ Ij

Now we can integrate and bound the s.p. of the loops of Lo by using the
upper bounds contained in the estimates of the Proposition A.2. It is con-
venient to use the rescaled hoppings: TAj :=

|tAj|

r(U2 )− |r(’me)|
.

S[Lo ¾ l1] [ C
j=a1+· · ·+ar

j=o
j(l1) D(t1) j×(r(Ũ)− |r(me6 )|) j

×
C j(a1+· · ·+ar)

a1!× · · · ×a r!
3 D
i=m1

i=o
|TAo{1, i} |
4a
1

× · · · ×3 D
i=mr

i=0
|TAo{r, i} |
4a
r

[ 5 C
j=a1+· · ·+ar

j=o
j(l1) D(t1) j×

(r(U2 )− |r(me6 )|) j

j!×(a1+·· ·+ar−j)!
6

×
(a1+·· ·+ar)!
a1!× · · · ×a r!

3 D
i=m1

i=o
|TAo{1, i} |
4a
1

× · · · ×3 D
i=mr

i=o
|TAo{r, i} |
4a
r

The next step is to absorb the factorials in the rescaled hoppings, by using
the combinatorial lemma.
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3.2.5. The Combinatorial Lemma

Let {a1,..., an} be a sequence of strictly positive numbers, and let
{o1,..., on} be a sequence of positive integers. Then the following inequality
is true:

{o1+·· ·+on}!
o1!× · · · ×on!

<D
i=n

i=1

5 1
ai
6oi×3C

i=n

i=1
ai 4

(o1+· · ·+on}

(C.12)

Proof. The above inequality is equivalent to:

{o1+·· ·+on}!
o1!× · · · ×on!

×D
i=n

i=1
aoii < 3C

i=n

i=1
ai 4

(o1+· · ·+on}

The L.H.S. is one of the terms contained in the expansion of the R.H.S. of
the inequality. To compute the coefficient of the product < i=n

i=1 a
oi
i in the

R.H.S., we first select the terms containing ao11 , by choosing o1 factors in
the product of the R.H.S., there are Co1{o1+· · ·+on} possible choices. Next, to
select the term containing ao22 , we choose o2 factors in the {o2+·· ·+on}
remaining factors of the R.H.S., there are Co2{o2+· · ·+on} possible choices. We
iterate the process to get:

Co1{o1+· · ·+on}×C
o2
{o2+· · ·+on}× · · · ×C

on
{on}=

{o1+·· ·+on}!
o1!× · · · ×on!

L

As we will use repetitively the formula (C.12) of the ‘‘combinatorial
lemma,’’ we explain in detail how it works. Let |TAo{k, i} | be the maximum of
the |TAo{k, i} | when an S.I. condition holds. We make the following choices for
aj and for oj:

oj :=a j; aj :=4· |T̄A{o, j}i
|

The sup is taken over the values of the rescaled hoppings, which satisfy the
S.I. condition.

C
{0 ¥ Ai}

|TAi | : < C(H) <. (C.13)

This is the sum of the s.p. of the complete family of the loops, which
projections on the basis contain one fixed point, it was shown to be uni-
formly convergent in the Proposition A.1(i) and (ii), if an S.I. condition
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(0.11) is satisfied. Then we deduce the following uniform bound w.r.t. every
conditional ensemble:

(a1+·· ·+a r)!
a1!× · · · ×a r!

[ 5 4C(H)

< i=m1

i=o |T̄Ao{1, i} |
6a
1

× · · · ×5 4C(H)
< i=mr

i=o |T̄Ao{r, i} |
6a
r

(C.14)

In the expression of S[Lo ¾ l1], we replace the factorials by the above
upper bound to get:

(a1+·· ·+ar)!
a1!× · · · ×a r!

3 D
i=m1

i=o
|TAo{1, i} |
4a
1

× · · · ×3 D
i=mr

i=o
|TA1{r, i} |
4a
r

[ 3 D
i=m1

i=o
|T̂[1]Ao{1, i} |
4a
1

× · · · ×3 D
i=mr

i=1
|T̂[1]Ao{r, i} |
4a
r

(C.15)

Where |T̂[1]A[1]{k, i} | :=4F̄×|TA
o
{k, j}
|× |T̄Ao{k, j} |

−1

S[Lo ¾ l1] [ j(l1)(r(Ũ)− |r(me6 )|) 5 C
j=a1+· · ·+ar

j=o

1
(a1+·· ·+ar−j)!

6

×3 D
i=m1

i=o
|T̂[1]Ao{1, i} |
4a
1

× · · · ×3 D
i=mr

i=o
|T̂[1]Ao{r, i} |
4a

[ j(l1)×(r(U2 )− |r(me6 )|)×e

×3 D
i=m1

i=o
|T̂[1]Ao{1, i} |
4a
1

× · · · ×3 D
i=mr

i=o
|T̂[1]Ao{r, i} |
4a
r

(C.16)

The first inequality of (C.16) was obtained by using the estimates (iii) and
(iv) of the Proposition A.2.
Next the time’s integration, which leads to the estimate of S[Lo ¾ l1],

can be iterated to the second linked loop of the first generation, and then
to all the loops of the second generation. Then the integration over the
edges of y1(AF P) … y(AF P) are performed according to the order induced by
the tree y(AF P). Next we iterate the integration to all the generations of
loops up to the last one, which is reduced to one linked loop. Finally we
integrate the jump’s times of the last linked loop, keeping its birth’s time
fixed, next we integrate the birth’s time over the segment [0, 1), this gives
one. Then we come back to the initial indexation of the hoppings.

|Fb[y(AF P)]| [ R(y(AF P))[r(U2 )− |r(me6 )|]D
k=n

k=o
|T̂[1]Ak | (C.17)
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To get the final estimate, we bound the coefficient R(y(AF P)), which is a
geometric coefficient, which depends only of the intersection properties of
the cluster. (21) Then R(y(AF P)) is the same for all the clusters, which have
the same tree y(AF P). So we use the Cauchy formula for analytic functions,
to get an upper bound on R(y(AF P)).

|fb[y(AF P)]| [ sup
{TAi}i ¥ {o,..., n}

|Z{0 i=pi=1 F[o, 1)(AF
i)} |×

|T̂[1]Ao |<
k=n
k=1 |T̂

[1]
Ak |

|T̄Ao |<
k=n
k=1 |T̄Ak |

(C.18)

The ‘‘sup’’ is taken over the TAi, which are the rescaled hoppings satisfying
an S.I. condition, such upper bounds exist because the hoppings decay
exponentially in the tree distance. To bound the partition function, we use
the quantum Dobrushin’s inequality contained in the Proposition B.2.

sup
{TAi}
|Z{0 i=pi=1 F[o, 1)(AFi)}

| [ 5C
i=n

i=o
|T̄Aio |D |T̄Aio |6 (C.19)

We define the rescaled hopping: |T̂[2]Ak |=:
|T̂[1]Ak

|

|T̄Ak |
to get the estimate:

|fb[y(AF P)]| [ [r(U2 )− |r(me6 )|]D
k=n

k=o
|T̂[2]Ak | (C.20)

Note. The upper bound obtained for |fb[yAF P]| depends ONLY of
the rescaled hoppings. No matter of the tree y(AF P) ¥T(AF P), of the con-
stituent loops of the cluster, provided that the clusters are projected onto
the same linked graphAP.

3.2.6. Step II. The Cardinality E(AF P) of the Spanning Trees of T(AF P)

The cardinality of the spanning trees, which are built on the graph
C*[T,AF P], is estimated by using a local estimate. The 2kx edges incident
at x are partitioned into r subsets of identical edges, each one has a mul-
tiplicity gxi . Then E(AF

P) is bounded by the product over the vertices ofAF P

of the sum of the different partitions of even incident edges at the vertices x
of the graphAF P.

• The number of decompositions into kx pairs of edges built from 2kx
edges, is bounded by 2kx!

2kx
× 1
g
x
1 !× · · · ×g

x
r !
.

• The number of partitions of a given set of kx pairs of edges into
partitions of subsets is bounded by 2kx. Collecting these bounds, we get:

E(AF P) [ D
{x ¥AFP}

(2kx)!
gx1 !× · · · ×gxr !

= D
{x ¥AFP}

[; i=r
i=1 gxi ]!

gx1 !× · · · ×gxr !
(C.21)
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3.2.7. Step III. The Cardinality E(AP) of the Constituent Complete
Families of Loops

The set of clusters, which are projected on the same unoriented graph
AP, can be built from different complete families of loops, two non
winding intersecting loops of Lo

2, and a loop of L
o
4 can have the same

projection and the same jumps. We bound the cardinality of the complete
families of loops, which have the same family of jumps, the same projection
onto A. Again we look for a local bound at each vertex x ¥AP, next they
will be factorized the estimates obtained for all the vertices of AP. Let us
start from the set of the 2kx edges which are incident at a vertex x, we con-
sider the different partitions of these 2kx edges. The set of the different
complete families of the loops contained in the cluster is included into the
set of the even different partitions of the 2kx of the edges containing x.

E(AP) [ D
{x ¥AFP}

(2kx)!
gx1 !× · · · ×gxr !

(C.22)

The cardinality of the pairings of AP of the set A is given by: <j
|Aj|
2 !.

Finally we insert the estimates (C.21) and (C.22) to get (C.23):

|Yb[SA]| [ [r(U2 )− |r(me6 )|] 3D
i=n

i=o

|Ai |
2
!× |T̂[2]Ai |4×E(AF P)×E(A)

[ [r(U2 )− |r(me6 )|]×3D
i=n

i=1

|Ai |
2
!× |T̂[2]Ai |43 D

{x ¥ GF}

(2kx)!
gx1 !× · · · ×gxr !

42

[ [r(U2 )− |r(me6 )|] 5D
i=n

i=o

|Ai |
2
!× |T̂[3]Ai |
6 (C.23)

We used again, at each vertex of the set Ax, the formula (C.12) of the
combinatorial lemma to remove the factorials appearing at every incoming
edge by constants, we use the following fact: each edge of the graph con-
tains two vertices, and then is counted at each vertex. The constants are
absorbed in the new resealed hoppings: |T̂[3]A{o, j}i

|=: F̄(H)× |T̂[2]A{o, j}i
|×

|T̄A{o, j}i
|−4. Notice that our bounds were obtained by considering the limit

SQ., which are upper bounds for the corresponding expressions for finite
S. Next we use the quantum Dobrushin’s inequality. The effective poten-
tials can be defined as the multiple derivatives of the log of the conditional
partition functions. The existence of the limit SQ. of the conditional
partition functions as analytic functions proved in the Proposition B.1.2
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implies the existence of the limits SQ. of the correlation functions as
analytic functions. We notice that the contributions of the winding loops
without jumps is given by: b−1 log[1+exp(−b(U−svm

e)].

3.2.8. (b) The Low Temperature Estimate

To get the low temperature estimate, we have to sum over all the
truncated functions of the clusters containing one point, we modify the
above estimate as follows: we go back to the expression of S[Lo ¾ l1], in
which we factorize the s.p. of the winding loop from the other terms. Then
we sum independently the two factors as follows:

• first we sum over all the s.p. of a winding loops containing one
point using the estimate (b) of the Proposition A.2.

• secondly we bound the other factors by using the estimate (C.5) of
the Proposition C.2.2.

|R{b, w}p [SV |SVa]| [ b−1 exp−b(r(U)− |r(me)|− ||T||− ||T|| O 1
||T||
r(U)
42

×51+ ||T||
r(U2 )− |r(me6 )|− ||T||

6

[
||T||p+1

[r(U2 )− |r(me6 )|]p
(C.24)

APPENDIX D. THE EFFECTIVE HAMILTONIAN:

PROOF OF THE THEOREM

D.1. The General Case: The p Order Decomposition of the

Hamiltonian Hb

We can write the conditional partition functions as:

Z{H; SV |SVa]}=exp−b 3Ho
b[SV |SVa)+ C

{SA ¥ SV 2 SVa}
Yb[SA]4 (D.1)

It is crucial to see that the potentials constructed through the C.E. are
local: they depend ONLY of the local ion’s configuration restricted to their
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support. The hamiltonian H ¥ F has an effective hamiltonian Hb uniquely
defined by its value on each ion’s configuration (SV |SVb).

Hb[SV |SVb]=Ho
b[SV |SVb]+· · ·+H

p
b[SV |SVb]+ C

{SA ¥ SVb | |A| > p}
Yb[SA]
(D.2)

The truncated hamiltonians axe computed explicitly up to the order p (i.e.,
the potentials built from the truncated functions of the clusters containing
p hoppings). The tail potentials, decay exponentially in the tree distance
(Proposition C.2.2.).

D.2. The LT p Order Decomposition of the Hamiltonian Hb

Hb(V)=Ho
.(V)+· · ·+H

p
.(V)+H [ p

{w, b}(V)+H > p
b (V) (D.3)

We partition the truncated functions into two parts.

(1) The truncated functions, which do not involve winding loops.
Notice that this corresponds to take b=. in the effective potentials
H
p
b[SV |SVa], because the effective potentials, which are built from the

truncated functions of the clusters, which contain a winding loop, go to
zero, when b Q..

(2) The truncated functions, which do involve winding loops.

H [ p
{w, b}(V) :=Ho

{w, b}(V)+· · ·+H
p
{w, b}(V)

The estimate (b) of the Proposition C.2.2. provides an upper bound on
the potentials ofH [ p

{w, b}(V) at low temperature.

APPENDIX E. THE EFFECTIVE HAMILTONIAN OF H È F ; JX, Y ] 0

The definitions contained in the previous appendixes, are transposed
in the case of the interacting linked loops just by adding the subscript I.
The arguments of the functions, defined in the previous appendixes, include
the coupling constants J{X, Y}. The basic tool needed to construct the effec-
tive hamiltonian Hb of an hamiltonian H ¥ F is again the existence of a
convergent C.E. extended to the interacting linked loops. The polymers are
now the interacting loops, i.e., the connected sets of loops, which are at
distance smaller than l. Two polymers are compatible if the distance
between every pairs of loops belonging to the different polymers is larger
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than the range of the classical hamiltonian l. Notice that the exact knowl-
edge of the s.d. of the interacting loops is required only when we compute
explicitly the first orders of the effective hamiltonian. For the higher order
terms we just need an upper bound on each s.d., to be able to prove the
existence of a convergent C.E..

E.1. The Estimates

We generalize the estimates of the Appendix A to the interacting
loops l̂I. We first bound the absolute values of the s.d. of l̂I by the pro-
ducts of the s.d. of the constituent loops of l̂I, in which we replace the
classical energy of the vertical up arrows and of the down arrows of the
loops by the upper bound of the energy Û−2; {X, Y ¥ V×V | o ¥X} |J{X, Y} | :=U.
Now the interaction between two loops is revealed by the geometric con-
straint: the distance between the two loops is smaller than l. Next we derive
the two main estimates, which extend those of the Appendix A.

Proposition E.1.1. The hamiltonian H ¥ F satisfies an S.I. condi-
tion (0.11).

|r(me6 )| < r(U2 )− l2n ||T||− exp−b{r(U2 )− |r(me6 )|− l2n ||T||}+h.o. (E.1)

(A) Then the following estimates hold for every temperature:

(i) |FpI[F{0, 1](AF)]| [
p!

[r(U2 )− |r(me6 )|]p
3D
i=n

i=1
l2n · 2

Ai
2 |tAi |4

×3 1
r(U2 )− |r(me6 )|

4n−1

(iv) |FpI[U, T, me]| [ b−1 exp(−b[(U)− |r(me)|)

+3 p!
[r(U2 )−r(me6 )]p

×
l4n ||T||2

r(U2 )− |r(me6 )|− l2n ||T||
4

(E.2)

(a) There exists two positive constants Cp and Ap such that, if
b

l2n ||T||p+1

[r(U2 )− ||T||]p
> Ap, we have:

|FI[U, T, me]| [ Cp
[l2n ||T||]p+1

[r(U2 )− ||T||]p
(E.3)

Proof. The geometrical structure of the clusters of non interacting
loops defined above and the structure of the interacting loops are similar, if
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we make the following correspondance: the notion of intersection between
two loops l̂ and l̂Œ of a cluster is replaced by the notion of interaction
between the loops l̂ and l̂Œ, i.e., that the two loops are such that
o < d(l̂; l̂Œ) < l. Then the generalisation of the estimates of the Appendix A
to the interacting loops is obtained from the estimates performed in the
Appendix C for the sum of the s.d. of the complete families of clusters. We
compare the situation of a cluster and of an interacting loop which con-
stituent loops are the same. Let us consider a cluster containing two inter-
secting loops l̂ and l̂Œ. In the computations of the Appendix C, the loop l̂

is fixed, meanwhile the births’ times of l̂Œ is integrated. Let us go to the case
of the interacting loops l̂ and l̂Œ, the loop l̂ is integrated, then the birth’s
time of l̂Œ is integrated over a cylinder which basis is a n hypercube of basis
length l, and which height is the time. So the estimates for the sums of s.d.
of interacting loops of the above proposition are deduced from the estima-
tes of the Proposition C.2, if we insert a factor l2n for each pair of loops
which interact. As there is, at least, one hopping per interaction, we get the
upper bounds contained in the proposition, if we insert a factor l2n in each
rescaled hopping, in the estimates obtained in the proof of the Proposition
C.2. This defines the new S.I. condition (0.11), which is we needed for the
proposition. L

E.2. The Dobrushin’s Inequalities

The proofs are similar to the case of non interacting loops. The
incompatibility relation between two interacting loops is that at least two
loops, one for each interacting linked loop, intersect, then we use the esti-
mates contained in the Proposition D.1.1. to get the new S.I. condition:

|r(me6 )| < r(U2 )− l2n ||T||− exp−b{r(U2 )− |r(me6 )|− l2n · ||T||} (E.4)

E.3. The Exponential Decay of the Potentials

Proposition E.3.1. The hamiltonian H belonging to F fulfill an S.I.
condition.

(a) The potentials contained in the effective hamiltonian Hb decay
exponentially.

|Yb[SA]| [ [r(U2 )− |r(me6 )|]×D
i=n

i=1
2
Aj
2 ×
Aj
2
!× |l2nT̂[3]Ai | [ exp−K.T(A)

(E.5)
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(b) Moreother for b
[l2n ||T||]p+1

[r(U2 )− |r(’me)|]
p > Ap, and for |A| < p, we get:

|R{b, w}p [SV |SVa]| [
[l2n ||T||]p+1

[r(U2 )− |r(me6 )|− l2n ||T||]p
(E.6)

Proof. To prove the exponential decay of the effective potential, we
use exactly the same route as for the non interacting case. We have to take
into account three facts.

• We extend the C.E. performed for non interacting loops to the
interacting loops.

• When integrating over the s.p. of the interacting loops, we use the
estimates of the proposition D.I.1., which requires that a new S.I. condition
is satisfied.

• When two loops contained in two interactings loops intersect, the
times’ integrals over their birth’s time is the same as for the case of non
interacting loops.

When an S.I. condition holds, the potentials of the effective hamiltonian
decay exponentially, if we insert in the computations of the Appendix C
a factor l2n in front of every rescaled hopping. L

6. CONCLUSIONS

The study of a class of models of the quantum statistical mechanics
was converted into a solvable problem of the classical statistical mechanics.
In a companion paper, (5) we apply our approach to the Falicov–Kimball
model. Under the S.I. condition, the existence of a cascade of new phase
transitions with higher periodicities is shown to exist. We point out that
T. Kennedy and E. Lieb have proved the existence of a phase transition
even when the weaker W.I. condition holds for me=m i=U, and arbitrary
t
U > 0. So that we expect that a part of our result should be true in this case,
however we do not expect that phases of period larger than two should
exist. Fermions with spin are more difficult to treat, but our method can be
extended to prove the existence of a Neel phase transition at low tempera-
ture for the assymetric Hubbard model (different hoppings) by using a
contour representation in the space time. The loop expansion can be done
for bosonic systems. We mention the Holstein model, which takes into
account the vibrations of the ions (polarons). (25, 26, 28) Our method can be
generalized to the static Holstein model considered in ref. 27. After sub-
sequent generalisations, one should be able to prove the Peierls instability
in the Holstein model.
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Our approach makes possible to study the problem some quantum
interfaces using again the methods of the classical statistical mechanics.
The structure which appears for the phase transitions appears for the
quantum interfaces of the FK model. The quantum fluctuations select one
dominant quantum interface. The 100 interface of the FK model (the
interface orthogonal to the 100 vector) is rigid at low temperature due to
the first order quantum fluctuations. The 111 interface is infinitely degen-
erate for the first order effective hamiltonian. The third order quantum
fluctuations together with the Fermi statistic are responsible of the rigidity
of the 111 interface at low temperature. (29) We point out the papers of
Datta, Fernandez, and Frohlich, (30a, 30b) which show the existence of
quantum phase transitions.
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